SANDIA REPORT

SAND2004-6252
Unlimited Release
Printed December 2004

The Common Geometry Module (CGM)

Timothy J. Tautges
Parallel Computing Sciences Department
Sandia National Laboratories

Prepared by

Sandia National Laboratories

Albuquerque, New Mexico 87185 and Livermore, California 94550
Sandia is a multiprogram laboratory operated by Sandia Corporation,
a Lockheed Martin Company, for the United States Department of
Energy under Contract DE-AC04-94AL85000.

Approved for public release; further dissemination unlimited.

@ Sandia National Laboratories

Issued by Sandia National Laboratories, operated for the United Statagrbent of Energy by Sandia
Corporation.

NOTICE: This report was prepared as an account of work sponsored by an agrecyoited States
Government. Neither the United States Govern-
ment nor any agency thereof, nor any of their employees, nor anyroédhéiactors, subcontractors, or

their employees, makes any warranty,

express or implied, or assumes any legal liability or respitinsfor the accuracy, completeness, or
usefulness of any information, apparatus, prod-

uct, or process disclosed, or represents that its use would not infringe pri-

vately owned rights. Reference herein to any specific commeraduct, process, or service by trade
name, trademark, manufacturer, or otherwise, does not necessariljut®s imply its endorsement,
recommendation,

or favoring by the United States Government, any agency thereaofy of ¢heir contractors or
subcontractors. The views and opinions expressed

herein do not necessarily state or reflect those of the United Statesnc

ment, any agency thereof, or any of their contractors.

Printed in the United States of America. This report has been reptbdineetly from the best available
copy.

Available to DOE and DOE contractors from
Office of Scientific and Technical Information
P.O. Box 62

Oak Ridge, TN 37831

Prices available from (615) 576-8401, FTS 626-8401

Available to the public from

National Technical Information Service
U.S. Department of Commerce

5285 Port Royal Rd

Springfield, VA 22161

NTIS price codes
Printed copy: All
Microfiche copy: A01

SAND2004-6252

Unlimited Release

Printed December 2004.

The Common Geometry Module (CGM)

Timothy J. Tautges

Parallel Computing Sciences Department
Sandia National Laboratories

P.O. Box 5800

Albuquerque, NM 87185-0847

Abstract

The Common Geometry Module (CGM) is a code library which provgéesnetry functionality used for
mesh generation and other applications. This functionality includesatmama@nly found in solid
modeling engines, like geometry creation, query and modification; @Sdlincludes capabilities not
commonly found in solid modeling engines, like geometry decompositiols and support for shared
material interfaces. CGM is built upon the ACIS solid modeling enginglbatincludes geometry
capability developed beside and on top of ACIS. CGM can be used as-asittepgeometry functionality
for codes needing this capability. However, CGM can also be extended ususgl déasses in C++,
allowing the geometric model to serve as the basis for other appigator example mesh generation.
CGM is supported on Sun Solaris, SGI, HP, IBM, DEC, Linux and Windows Nfbpts. CGM also
includes support for loading ACIS models on parallel computers, usingoield communication. Future
plans for CGM are to port it to different solid modeling engines, inctuBiro/Engineer or SolidWorks.
CGM is being released into the public domain under an LGPL licéms&CIS-based engine is available
to ACIS licensees on request.

Intentionally Left Blank

Contents

1 INTRODUGTION ..ottt r s s s s bbb e e e e s e s s s a e e e e e e s s abrae s 6
2 GEOMETRY MODEL ...oiiiiiiiiiiiiiiii ettt e e e st r e e s s e s e e e e e e s s e nanes 6
3 USER'S GUIDE ..o 9
4 APPLICATION DEVELOPER’S GUIDEootiiiiiiiiiitiiiiie ettt 31

5 CUBIT USAGE OF CGM ...oiiiiiiiiiiiiiiiee ettt ettt e e e et e e e e s s bbb e et e e e s e aanrnnee s 37
6 SUMMARY AND CONCLUSIONS..... ..ottt e e 43

T REFERENGCES ... oottt ettt e e e s ettt e e e e e bbb e et e e e e e s b e e et e e e e e e nanrrnnees 43
APPENDIX A CGM LICENSING......ciiiiiitiiiiie et e e 43

APPENDIX B CGM, CUBIT CLASS DIAGRAMS ...ttt 44

1 Introduction

The Common Geometry Module (CGM) is a code library which provg@esnetry functionality used for
mesh generation and other applications. This functionality includesatmaaenly found in solid
modeling engines, like geometry creation, query and modification; @sdlincludes capabilities not
commonly found in solid modeling engines, like geometry decompositols and support for shared
material interfaces. CGM is built upon the ACIS solid modeling enginglbatincludes geometry
capability developed beside and on top of ACIS. CGM can be used asdsittepgeometry functionality
for codes needing this capability. However, CGM can also be extended usisgl déasses in C++,
allowing the geometric model to serve as the basis for other appiigaior example mesh generation.
CGM is supported on Sun Solaris, SGI, HP, IBM, DEC, Linux and Windows Nfbptes. CGM also
includes support for loading ACIS models on parallel computers, usiigp®eéd communication. Future
plans for CGM are to port it to different solid modeling engines, includinERgineer or SolidWorks.
CGM is being released into the public domain under an LGPL licams&&1S-based engine is available
to ACIS licensees on request.

This document is organized as follows. Section 2 describes the gigamedel used in CGM, commonly
referred to as a BREP model. Section 3 is a User's Guide, dagdnifv CGM can be used as-is to
support geometry functions without the addition of application-speggfionetry capability. Section 4, the
CGM Developer’'s Guide, describes the design of CGM in more detdihaw CGM capabilities can be
extended using derived classes in C++. Section 5 gives details of CGM haiagie tspecific to the
CUBIT Mesh Generation Toolkit; this section also serves as a use@iupe of how to extend CGM data
structures for specific purposes. Appendix A describes licengipgreenents for CGM, and for the ACIS-
based parts of CGM. Appendix B contains source code listings fortthe@ C driver applications,
including makefiles for building these applications.

This document is intended to serve as both an introduction to CGM as wedifaseace. For those
wanting a quick introduction to using CGM in its various modes, see SectiQris&8ahd 0; these sections
describe CGM driver applications and do not require reading of this manuadiérstand the basic
concepts.

2 Geometry Model

The basic geometry representation used in CGM is that of a BoundalgsBeiation, or BREP. While
this is a commonly used representation, the nomenclature used tbelé@scain vary greatly. Therefore,
this section first introduces the basic elements of topology, and more amihpthe terminology used to
describe those elements in the rest of this document. In addition to tppiblexg are other important
elements of the geometric model used in CGM that are important tostamrthese elements are
introduced in sections 2.2-2.4.

CGM is meant to serve as an interface to geometric models in a \&rfetynats, some of them solid
model-based, some of them not. A discussion of the current and future supparidos geometry
representations is discussed in section 2.5.

2.1 Topology

The basic topological entities used in CGM, along with their dimensionshaven in Table 1. Note that
in the case of Edges and Faces, the most common nomenclature carubmganfa finite element
context, since there are also “edge” and “face” element typeasés evhere the type of edge or face is
unclear from the context, the terms “geometric” and “mesh” agd tesqualify the term as pertaining to
geometry or mesh, respectively.

In addition to the basic topological entities, there are a number of otheety@oenmtities which can be

used to describe the geometric model. These entities are klypicahecessary for the complete geometric
description of a BREP model, but they are useful constructs noesthelhese entities are described in
Table 2.

Table 1 “Basic” topological entities in the CGM geometric model.

Basic Dimension
Topological
Entity

Vertex

Edge

0
1
Face 2
Volume 3

Table 2 Other geometric entities used in CGM geometric model.

Entity Description
Grouping Body One or more volumes, share a transform and patrticipate
Entities together in geometry transforms and booleans.

Shell Group of CoFaces describing a closed or open shell; if

closed, describes a boundary of a volume. Can be inner
or outer boundary.

Loop Group of CoEdges describing a boundary of a face. |Can
be inner or outer boundary.
Sense CoFace Entity describing the orientation of a face as used inja
Entities shell, with respect to the face’s normal.
CoEdge Entity describing the orientation of an edge as usedin a

loop, with respect to the edge’s tangent direction.

In a typical application, a geometric model consists of one or woduenes, each volume bounded by one
or more faces, with each face bounded by one or more edges andsvertieeentities in a BREP model
are related to each other in a geometric hierarchy, which can leseaprd using a graph. In general, an
entity of dimension d is bounded by one or more entities of dimension d-1<B< d

There are several exceptions to the typical geometric model debatilove that are allowed in CGM
models. First, CGM (and ACIS) allows curves to be bounded by a singgx;viktrese are called periodic
curves, in reference to the periodic nature of the curve’s parameter $jlemeise, periodic surfaces are
also allowed; these are surfaces whose parameter space comtgirgigoontinuities, for example a
cylindrical surface. Periodic entities can complicate apptinatlike mesh generation; therefore, CGM can
optionally split these entities into non-periodic entities.

In rare cases, geometry exists where an entity of dimension d isictly iounded by an entity of
dimension d-1. The best example of this is a cone, where the apexeiserdpd topologically by a vertex.
Although there is no apparent curve corresponding to this vertex, CGM modaeilsitigjsa zero-length
curve. Applications not desiring this behavior can request that the pegittdties in a body be split into
non-periodic ones.

Geometry can be envisioned whereby a single basic topological entitgdathigher order entity twice;

an example would be a torus with a circular face containee twithe bounding shell, or a “scratch” curve
included twice on a surface. While these cases can be repregsimggudicious application of CoFaces
or CoEdges, they are not typically found in real-world geometries. Gasssiing surfaces included twice
by a single shell are not strictly supported in CGM; however, edgesccarr twice in a given loop, and
these types of edges can occur with others on a loop (e.g. a re-entrapbeddiag a surface), or by
themselves (e.g. a “scratch line” on a surface).

2.2 Non-manifold modeling

Non-manifold geometry is a general term describing models of mixeghdion, e.g. models containing
volumes and dangling faces or edges. In the context of CGM, the ternmiamgifeld geometry” is used to
indicate the presence of entities of dimension d-1 shared by more thantity of dimension d. In

particular, “non-manifold” is often used in the context of CGM to des@roups of volumes which share
faces in between them.

CGM represents shared edges and faces by actually representinig @dgegor face, along with sense
entities (CoEdge and CoFace, respectively) to describe the onermétihe entity with respect to the
higher-dimension entity. For example, an edge can be part of two adjazent fehe edge has a “natural”
orientation, such that vertex V1 is the “start” of the edge and V2 is tiB8.“@ hen, the two faces sharing
that edge use the edge with opposite “sense”; face F1 uses the edgemitidt sense, that is with a
sense corresponding to the edge’s natural direction, while face F2 usdgeaheith “reverse” sense.
Likewise, in the case where two volumes share a common face, ameevotes the face with a forward
sense while the other uses the face with a reverse sense. Noteltipé fages can share a given edge in
a non-manifold model. However, in typical geometries, at most two wswmill share a given face, each
with an opposite sense. If the senses are the same, overlapping geoowmiaflysindicated.

2.3 Groups

The grouping entities listed in Table 2 are specific to the kindsarhgty they contain; for example,
bodies consist only of one or more volumes. In contrast, geometry giaipsed in CGM to store one or
more geometry entities of arbitrary type, including other groups. Thesmstored in a given group
typically have no implied relation to each other, and are grouped onlgrigenience, either for the user
or for a specific application. For example, users may want tbecasgroup of all entities falling on one
side of a coordinate plane. Groups are used extensively in the CUBIGatipplof CGM, and in some
cases inside CGM itself.

2.4 Attributes

Attributes are defined as information which can be associated wittiaytar geometric entity, but which
are not intrinsic to the representation of that entity. For example, the ofsa geometric entity, while not
required to represent an entity, is associated directly to thiat. eBGM provides functions for storing
application-specific attributes directly on geometry ergtjtend functions for managing that data when
geometry is stored to disk.

2.5 Geometric Representations Supported

CGM supports a variety of geometric representations; how it suppatisaéso varies, between serving as
an interface to some other code library and implementing thaseegegion inside CGM.

Solid model geometry usually originates from a CAD systemgxXample SolidWorks or Pro/Engineer.
There are also several commercially-available code libraliksto evaluate such geometry in its native
format. CGM provides its best support for solid model-based geoimdtrg ACIS format [1]; this format
can be exported directly from SolidWorks and other modelers, or can batednato from various
formats. Using components provided with the ACIS modeling engine, €4B\iso import geometry in
the IGES and STEP formats, though this mechanism of geometry transfat s@voided if possible.

CGM provides facet-based geometric modeling, where a theb&l can provide the description of the
outer boundary(ies) of a solid. This mechanism is useful for repregesatinned data like biological
models, and for representing deformed models resulting frorgsihiaFaceted surfaces can be modeled as
piecewise-planar surfaces, or can be used to compute a Beaeamtgpthed surface. The techniques used
to compute this surface are described further in Ref. [2].

Another very powerful geometry modeling technique is that of “vigeaimetry” [5]. In this modeling
technique, the model topology can be modified while retaining thenatigeometric shape. For example,
virtual geometry can be used to combine small topological surfacebe¢ogeo a larger logical surface.
This capability is used to support a variety of higher-level tools iiCthBIT mesh generation toolkit [1],
including detail removal and mesh skew control. Virtual geometry warlkany of the other supported
formats in CGM.

Future plans include developing direct interfaces to other solid mosgettfarmats. An interface has
already been developed for the SolidWorks CAD system [3], thoughaheperformance issues and this
is a query-only interface. Several implementations of interfacet&iyineer's Granite interface have
also been developed [4], but have more restricted distribution policieallyi-there are other modelers for
which the CGM team would like interfaces but do not have the time to developg &8 is distributed
under an open-source model (see Appendix A), there is a mechanikodriqr sharing CGM source code
for institutions desiring to collaborate on such an undertaking.

For more details about supported geometry formats in CGM, pleasetcbimal autges,
titautg@sandia.gav

3 User's Guide

3.1 Introduction

CGM encapsulates most of the geometry functionality requiredeb@tHBIT Mesh Generation Toolkit;
this includes interfaces to the ACIS solid modeling engine, but also imetepaon-manifold geometry,
virtual geometry and other functions not found in ACIS or other solid magetigines. CGM provides
all the functions necessary to restore geometry to the state usedatgen€UBIT mesh; if geometry
attributes are used to store the geometry after meshing in CUBIT,dheegg& model can be restored in
its final state with a few simple API calls. CGM can also be usednstruct geometry from primitives or
from fields of points, and evaluate this geometry for applicati@tifip needs.

This User’s Guide describes the use of CGM as-is to restoreatecand evaluate geometry. For
information on extending the functionality of CGM, for example to stashdirectly on geometry, see
the Developer’'s Guide in the following chapter. After describing thegyst components in CGM and
some implementation details, this chapter concludes with threepéxdniver applications. Users looking
for a quick-start guide to CGM should refer to these applications.

3.2 Module components

There are multiple components in CGM, distinguished by the functiptiadity implement and the
interface used to access that functionality. The components falt thmeigeneral categories of tools,
topology and geometry; these components are described in morerd#ialsection.

3.2.1 Geometry Tools and Engines

The primary interface to CGM is through its tools, and in particular throGdometryQueryTool and
GeometryModifyTool classes. GeometryQueryTool and GeomettyfiyT ool are implemented as
singleton classes (see section 3.7), which implies that their functiof®ocaewed as API functions rather
than functions associated with a geometry entity. GeometryQoekryfiplements functions necessary for
importing and exporting geometry files, and for querying the geometrgxaimple for surface normals
and tangents, body volume, and closest point to an entity. GeometryQueryTool

is also the point of access for global lists of geometric entitiesméepModifyTool provides functions
for modifying geometry in various ways, including booleans, healing, and variousofygpesomposition.
Separating geometry into query-only functions in GeometryQuerydrmbhon-query functions in
GeometryModifyTool allows applications to link in only the needed fanality; this tends to reduce
executable file sizes and improves modularity.

While the geometry tools provide a single interface to geomepability, the actual representations are
done using geometry engines. For example, AcisQueryEngine and AcisKiogiifie provide the
functions needed to create, query and modify ACIS-based geometryal@ieometryEngine and
FacetQueryEngine/FacetModifyEngine provide virtual and facetddeepresentations, respectively.

Other tools in CGM, most of them also implemented as singletores|gssrform functions in specific
areas, for example MergeTool, which changes manifold to non-man#oldetry, and FeatureTool, for
performing automatic decomposition.

3.2.2 Topology

There are various topology traversal functions that are acceBsitmie@ny of the CGM topological entities;
these functions give all the topological entities of a given type corthectn entity, e.g. all the vertices in
a volume, or all the bodies containing an edge. Most topology traversabimare called as member
functions of an entity object.

3.2.3 Geometry

Functions which are used to evaluate the geometric representationntityare called as member
functions of that entity. For example, there are member fundioren edge which move a given
coordinate position to the closest point on that edge, or which return the lengtheolige.

3.3 Tools and Engines Component

The primary access point to geometric capability in CGM is througim@&egQueryTool and
GeometryModifyTool, each of which has one or more underlying engindger f@bls provide
functionality which creates or modifies geometry. For exampleg&fieool detects coincident entities and
combines them to form non-manifold geometry. The most commonly ogksdare described in more
detail in this section.

3.3.1 Geometry Engine Initialization

CGM requires the calling application to create geometry engines of trerggpgired for the application.
This allows the selection of geometry engine to happen at applicatigriledime, and allows applications
to all use the same set of CGM libraries regardless of the engiggénusach application. Geometry
engines can be created before or after CGM itself is initiljites is described in Section 3.7.1). Three of
the most common combinations are:

e Query-only, ACIS-based In this case, an AcisQueryEngine objeatasect by calling its instance
function in the application:

AcisQueryEngine *age = AcisQueryEngine::instance();
Inside the constructor of AcisQueryEngine, the created engineseg#o the GeometryQueryTool
singleton instance (which gets instantiated during this process, if ometet been created).

¢ Moadify, ACIS-based
In this case, the application requires functionality to createanuddify geometry. This is
accomplished by creating an AcisModifyEngine instance:

AcisModifyEngine *ame = AcisModifyEngine::instance();
During this process, an AcisQueryEngine will be created, if it doegat@txist, and both will be
passed to their respective geometry tools (GeometryModifyTrabGeometryQueryTool,
respectively). Note that there is dependence from AcisMBdifjne on AcisQueryEngine, but not
vica versa,; this allows the creation of an AcisQueryEngine witti@ating an AcisModifyEngine,
which saves space in the application executable.

¢ Query-only, facet-based
In certain cases, applications need to construct and query faaet-paometry, for example for
remeshing deforming models. In this case, a FacetQueryEngine nurstbed:

FacetQueryEngine *fge = FacetQueryEngine::instance()0;
Note that this does not require the use of ACIS, which results in sublssaniizgs in executable size.

In all cases, no re-compilation of GeometryQueryTool or Gegidetdify Tool is required to support these
various functionalities. This simplifies the maintenance of CGM and sigpip®use in many different
contexts.

After the initialization of one type of engine (query-only or non-quAyIS-based or facet-based), other
engines can be created, and will be added to the corresponding tools i@iregjhat way, an application
can start functioning in a query-only mode and move to a hon-query motierffvecessary.

3.3.2 Geometry Query Operations: GeometryQueryTool

Once the appropriate query engine(s) are instantiated, all geaqmetigs should be done through
GeometryQueryTool or the specific topology classes. This enthaethe query will be made to the
appropriate engine (ACIS, facet, etc.), and also allows the impletioendé engine-independent code once
rather than in every engine. Some of the common types of query functi@raldescribed below. In all
cases, functions in GeometryQueryTool are accessed throughet@inigktance:

GeometryQueryTool::instance()->import_solid_model(...)

3.3.21 Geometry import/export

The most common method for defining geometry with CGM is to import it froM@S .sat file. These
files can be used to save geometry directly from CGM, and can alsottenwlirectly from several CAD
tools including SolidWorks and Pro/Engineer. The functions used to import pod geometry are listed
in Table 3. Only the required arguments are listed; each of the fundgines several optional
arguments, which can be used for example to define a log file to whidhfanyational messages are
written.

Table 3 GeometryModifyTool functions for importing and exporting geoméy from/to a disk file.

Function Purpose

GeometryQueryTool::import_solid_model Import a solid model file of a specified type
(ACIS_SAT, ACIS_SAB, etc.)

GeometryQueryTool::export_solid_model Export entities to a file of a specified type.

3.3.2.2 Global entity lists

After geometry is imported into CGM, it is maintained in globasleccessible through
GeometryQueryTool. Individual basic topological entities agatified primarily using integer ids, but

can also be identified using names (which are either defined by theasipp or can be assigned to default
values). Id numbers are unique within a given entity type, while si@aneeunique across all entities (this
behavior can be modified, but this is discouraged).

In addition to retrieving individual entities, there are functions in GegQeteryTool which give access to
the global entity lists. There are functions which directly acandsstep through lists, and functions which
pass back copies of the global lists for use in the application code ufidiehs used to access geometry
are summarized in Table 4.

Table 4: GeometryQueryTool functions for accessing global entitydts.

Function Description

GeometryQueryTool::cubit_entity_list Append entities of the specified type to a
DLCubitEntityList

GeometryQueryTool::ref_entity_list Append entities of the specified type to a
DLRefEntityList

GeometryQueryTool::bodies Append all bodies in the model to a DLBodyList

GeometryQueryTool::ref_xxx Similar for ref xxx

(xxx = volumes, faces, edges, -

vertices, groups, parts, assemblies,

coordsys)

GeometryQueryTool::get_ref_entity

Return an entity of a given type and id

GeometryQueryTool::get_body
GeometryQueryTool::get_ref_xxx
(xxx = volumes, faces, edges,
vertices, groups, parts, assemblies,
coordsys)

Return a body of a given id
Similar for get_ref xxx

GeometryQueryTool::num_bodies
GeometryQueryTool::num_xxx
(xxx = volumes, faces, edges,
vertices, groups, parts, assemblies,
coordsys)

Return the number of bodies in the global list
Similar for num_ref_xxx

GeometryQueryTool::get_first_body

GeometryQueryTool::get_first_ref xxx

(xxx = volumes, faces, edges,
vertices, groups, parts, assemblies,
coordsys)
GeometryQueryTool::get_next_body

GeometryQueryTool::get_next_ref xxx

GeometryQueryTool::get_last_body

GeometryQueryTool::get_last_ref xxx

Return the first body in the global list, positioning thg
list at the beginning; similar for get_first_ref xxx. For
get_next_xxx, step the list and return that item. For
get_last_xxx, get the last item in the list and position
the list at the end.

A%

3.3.2.3 Geometric Queries

The primary purpose of having geometric capability in an applicatiorpitade geometric information
about a model, including geometric extent (length, area, etc.), geofoesiion (closest point), and other
data (surface normals, tangents). Most of the geometric quetyolumn CGM are accessed through the
individual entities like curves, surfaces and volumes. Selectetdos@re listed in Table 5.

Table 5: Geometric query functions accessed through individual ¢ities.

RefEntity::measure()

Generic geometric extent function, returns the
length/area/volume of the edge/face/volume and|1.0
for vertices.

RefEdge::position_from_u(...)

Forward-evaluate a curve based on a u coordinate.

RefFace::normal_at(...)

Return the face normal at a given point.

RefFace::move_to_surface(...)

Move a point to the closest point on the
(untrimmed) surface

RefVolume::point_containment(...)

Returns whether a given point is inside, outside, pr
on the boundary of a volume

3.3.3 Geometry Modify Operations: GeometryModifyTool

Geometry modification functions are separated into another tool, GgdmeelifyTool. This tool interacts
closely with GeometryQueryTool, but is separate to allow use of &ep@QueryTool alone. Functions in
GeometryModifyTool are accessed through a singleton instance:

CubitStatus status = GeometryModifyTool::instance() ->intersect(...)

3.3.3.1 Geometry Primitives

Geometry is often created using a well-known primitive, e.g. brickydsis and spheres. The geometry
primitive functions provided in GeometryModifyTool are listed imble 6 (see the class header files for

complete descriptions).

Table 6 Geometry primitives and functions in GeometryModifyTool.

Function

Description

GeometryModifyTool::brick

Brick with dimensions specified in x, y and z.

GeometryModifyTool::cylinder Cylinder of specified height and radius; can create elliptic
cylinder or conic using minor radius and top radius, respectively.

GeometryModifyTool::sphere Sphere with specified radius.

GeometryModifyTool::prism N-sided prism with specified height (N >= 3).

GeometryModifyTool::torus Torus with major and minor radii specified.

GeometryModifyTool::pyramid Same as prism.

3.3.3.2 Geometry Creation

In addition to primitives, geometry can be created by creating vertimss edges, then faces, etc. These
functions are summarized in Table 7.

Table 7 GeometryModifyTool functions for geometry creation.

Function Description
GeometryModifyTool::make_RefVertex Make a vertex from a point.
GeometryModifyTool::make_RefEdge Make an edge from two vertices, optionally pn

a face, along a list of segments, as an
ellipse/parabola/logarithmic spiral

GeometryModifyTool::make_RefFace Make a face from a list of bounding edges, as
a plane/sphere/cone/spline/best fit surface.

GeometryModifyTool::create_body_from_surfs Make a volume from a list of bounding faces.

GeometryModifyTool::make_Body Make a body from a list of volumes.

In addition, bodies can be created by sweeping 2-dimensional faces iriodidirhension. Since this is a
common solid modeling operation, CGM provides several functions of thisthgse functions are
summarized in Table 8. Complete syntax and descriptions of thesmffisnate located in the class header
files.

Table 8 GeometryModifyTool functions which sweep a face into a 3-dimeiosal solid.

Function Description

GeometryModifyTool::sweep_translational Sweep a face into a volume by translation.

GeometryModifyTool::sweep_rotational Sweep a face into a volume by rotation.

GeometryModifyTool::sweep_along_curve Sweep a face into a volume by following a
specified curve.

3.3.3.3 Transformations

Transformation functions typically take a body and transform its gegpfietrexample by scaling,

rotation, or reflection. Since they involve local changes to the bedwyetry, transformation functions are
called primarily using the Body pointers. The exception to this rule is fleetrinction, which is called
using GeometryModifyTool and which yields a new Body. Transformatinctifans available on Body
and GeometryModifyTool are listed in Table 9. Since some of faestons are accessible through the
Body class, they can be used even in a query-only setting; in this caserancost is incurred in the size
of executables due to this capability.

Table 9 Transformation functions in the Body and GeometryModifyTool chsses.

Function Description

GeometryQueryTool:reflect Reflect a body across a given plane.
GeometryQueryTool:translate Move a body by a given dx, dy and dz.
GeometryQueryTool::scale Scale a body by a given factor.
GeometryQueryTool::rotate Rotate a body about a given axis, vector or curve.
GeometryQueryTool::restore_transform Restore a body to the state before the previous

| transformation.

3.3.3.4 Booleans

Booleans are set operations on two or more bodies, which yield two, one or e &®diresult,
depending on the type of and success of the operation. Boolean functiondeaseinted in
GeometryModifyTool, also return a status value, which should be athefter the functions are called.
Boolean functions provided by GeometryModifyTool are summarize@lner10. This list is not
exhaustive, but contains the most commonly used boolean functions; @tmhigplcan be found in the
class header files.

Unite, subtract and intersect are similar to the corresponding setiopgrand require no further
explanation. Imprint operations, as the name implies, imprints topéiogyone body onto adjacent
bodies; by definition, the imprinted topology is not geometrically siganifici.e. it does not change the
volume of a body. Imprinting is done to ensure that adjacent surfacesdératical topology, which
enables them to be merged together. Regularize is the opposite of imgifithttion removes topology
from a body which is not geometrically significant.

Table 10 Boolean functions in GeometryModifyTool.

Function Description

GeometryModifyTool::unite Unite the given body or bodies into a single body.

GeometryModifyTool::subtract Subtract one or more bodies from a given body.

GeometryModifyTool::intersect Intersect one or more bodies from a given body, of
intersect pairwise.

GeometryModifyTool::iimprint Imprint two or more bodies together.

GeometryModifyTool::regularize_body Regularize one or more bodies (opposite of imprint).

3.3.3.5 Geometry Decomposition Functions

Geometry decomposition is an important part of a hexahedral meshimncpsippl and must be supported
well by a geometry module. CGM provides many functions fooagosing geometry. Typically, a
cutting surface is specified using an existing surface, a surface extendingnfrexisting surface, or a
semi-infinite surface like a coordinate plane or cylindrizaface; or, sometimes an entire body is used
a cutting tool. The cutting tool or surface along with the body or bodies to beeqohissed to a specific
webcut function, which returns the results of the cutting operation. &egvtodifyTool functions
supporting geometry decomposition are summarized in Table 11.

Table 11: Functions supporting geometry decomposition.

as

Function Description

GeometryModifyTool::webcut_with_xxx Decompose one or more bodies with a given geomatry

(xxx = plane, sheet, vertices, entity or implicitly-defined geometric entity. Keeps all

%'('jr;c)ier' surface, extended_surface, bodies resulting from decomposition.

GeometryModifyTool::section Decompose one or more bodies with a planar surfage or
coordinate axis. Keeps bodies on one side of the
surface only.

GeometryModifyTool::split_body Changes multi-volume body into several single-volume
bodies.

GeometryModifyTool::split_periodic Splits periodic surfaces on one or more bodies into
multiple surfaces.

3.3.4 MergeTool

Non-manifold geometry, in the context of CGM, simply means geometrgioomg vertices, edges and
faces which can be shared by more than one volume or by mulépléafres or edges. Solid models are
created and imported as manifold models; a merge operation mustfrenzd on a model to convert it to
a non-manifold representation. The merge operation simply searchesritetgeentities of like topology
and geometry (within a specified tolerance), and merges any it findgjingés an important part of
applications built on CGM, and care should be taken to merge modelsngauritiguous regions before

interacting with those models.

Typically, geometry coming straight from a CAD system will requin@ea cleaning up before it will merge
correctly (i.e. before the only surfaces remaining in a multi-net@odel are surfaces on the “outside” of
the part). Geometry can be cleaned up by importing it into CUBIT or areyppécation and performing
the necessary geometry manipulations. At a minimum, all bodietddh@imprinted on one another to
guarantee that entities which are coincident in space also have li#tegpp While this is most often done
in another application before saving the final geometry, it might alsedessary to imprint the bodies in

the CGM application.

Functions which control merging are summarized in Table 12.

Table 12: MergeTool functions which control merging of manifold into non-nanifold geometry.

Function

Description

MergeTool::merge_all_bodies
MergeTool::merge_all_refxxx
(xxx = vertices, edges, faces)

Performs merge check on all entities of the specified
type.

MergeTool::merge_bodies
MergeTool::merge_entities
MergeTool::merge_refxxx
(xxx = vertices, edges, faces,
volumes)

Perform merge check on entities passed in as argum

ents.

MergeTool::contains_merged_entities

Returns CUBIT_TRUE if one or more bodies passed
contains merged child entities.

in

MergeTool::entity_merged

Returns CUBIT_TRUE if the entity passed in is merg

MergeTool::merge_has_occurred

Returns CUBIT_TRUE if a merge has occurred
anywhere in the model.

3.3.5 VirtualGeometryEngine

When a solid model is imported or created based on the ACIS geomeging eeach entity in the ACIS
model has a corresponding entity in the CUBIT model. For example F@&CE in the ACIS model will
have a corresponding RefFace in CUBIT. Sometimes, it is desirable to ¢her@eBIT model without
modifying the underlying ACIS model; VirtualGeometryEngine presithis capability.

VirtualGeometryEngine provides functions for combining or spitedges, faces and volumes. After
these operations, the CUBIT model reflects the new geometry, WhileG@IS model remains unchanged.
This capability can be used, for example, to combine many very suntgces into a larger topological

surface.

Table 13 summarizes the functions for creating, removing, and penfipother interactions with virtual

geometry.

Table 13: VirtualGeometryEngine functions for creating, removing and odherwise interacting with

virtual geometry.

Function

Description

PartitionTool::partition

Partition the given entity using explicit or implicit geometr,
(implicit geometry is geometry whose geometric data are
specfied by the user; explicit geometry is a geometry enti

ty

already extant in the model) |
PartitionTool::unpartition Remove the partition on one or more entities; removes only
one partition.
PartitionTool::unpartitionAll Remove all partitions on one or more entities, passing back
the list of restored entities.
CompositeTool::composite Composite the given list of entities into a single entity.
CompositeTool::uncomposite Remove composite, passing back list of restored entities,
CompositeTool::isComposite Returns CUBIT_TRUE if the entity passed in is a composite
entity.
CompositeTool::okayToComposite Returns CUBIT_TRUE if the entities passed in can be
composited together.

3.4 Geometry Component

3.4.1 Geometric representation: TopologyBridge

Before any merging operations, the geometric topology in CGMsqmrrals exactly to that of the solid
model. In the CGM datastructure, each solid model entity hagesponding TopologyBridge object,
which is unique to that solid model entity. Each RefEntity points to a sirgleldgyBridge (through a
BridgeManager object, the purpose of which is explained later). Thuselmérging, there is a one-to-
one correspondence between each RefEntity and its corresponding solleentibgle

The TopologyBridge object for a RefEntity is really the geometpoasentation of that entity. All
geometric queries to a RefEntity (e.g. the length of an edge, or the dibietmeeen a point and the closest
point on a face) are passed directly to the TopologyBridge object, whichrfisritee request to the solid
model entity. In this way, the solid modeling engine is used for geiemeeries, rather than duplicating
any data and code necessary to implement those queries in CGM. The pelficénto geometric queries
is implemented in the RefEntity objects instead of through TopologyBridgelér to reduce the number
of objects applications have to keep track of.

3.4.2 Alternative geometric representations

CGM has been designed to allow alternative representations of tygpimaéeed, this capability is being
developed actively in the virtual and facet-based geometry comizonAlternative geometric
representations can be used simply by providing code underneath TopologyBadgevides the
evaluation functions required by the corresponding RefEntity. See thuaNiurve class for an example
of such an alternate representation. This design also simplifiesottesprof substituting another solid
modeling engine for ACIS; a PROE-based implementation of CGM is beimyoged which utilizes these
design features, and other implementations are being considered.

3.5 Topology Component

Geometric models consist of topological entities like vertiedges and faces, related to one another
through a topology graph. Each entity of dimension d is bounded by one or mors ehtiiilaension d-1,
and, most of the time, bounds one or more entities of dimension d+1. One of themmostrcoperations
while querying geometry is to traverse this topology graph, finding entifidimension m related to one
or more entities of dimension n. CGM provides many functions foldggdraversal.

Most topology traversal functions are called as member functionsthe entity from which the traversal
starts; the functions are implemented in TopologyEntity. One @rodjtthis is the get_related_entity
functions, which take as input a list of entities and return aflisetated entities of a specified type. In all
cases, if a function is called to return all entities of the same syffeeantity from which the function was
called, that entity is returned in the list.

The topology traversal functions are summarized in Table 14.

Table 14: Topology traversal functions implemented in TopologyEntity

Function Description
TopologyEntity::bodies Return list of bodies related to the entity from whick
TopologyEntity::ref_xxx the function was called.

(xxx=volumes, faces, edges, vertices) Similar for ref_xxx functions.
TopologyEntity::shells oy

TopologyEntity--loops Similar for shells, loops, co_faces, co_edges

TopologyEntity::co_faces functions.
TopologyEntity::co_edges

For example, the following call is used to find all the vertices eotau to volume pointer voll and store
them in list vertex_list:

CubitStatus return_status = vol1->ref_vertices(vert ex_list);
Sometimes, it is desirable to gather the topological entities ofetktehigher or lower dimension, without
determining what the specific type of those entities is. For exargslmost of the meshing algorithms in
CUBIT, before meshing an entity of dimension d, all the bounding entities ehdion d-1 must already
be meshed. Topology traversal functions which return parent and childsewithout requiring the parent
or child entity type as input are used for this purpose and are definedantRef

The notion of a parent or child entity of dimension d+1 or d-1 only makes sera# basic topology

types vertex, edge, face, volume and body. Since we do not requigeteetatity type as input, these
traversal functions either give immediate parent or child entities, ogikieya list of all parent or child
entities.

The topology traversal functions defined in RefEntity are summaniz€edble 15. Like the traversal
functions in TopologyEntity, these functions are called as memberdusdiiom a RefEntity object.

Table 15: Parent and child topology traversal functions defined in R&ntity.

Function Description

RefEntity::get_child_ref_entities Return a list of all immediate children of the
RefEntity.

RefEntity::get_parent_ref_entities Return a list of all immediate parents of the
RefEntity.

RefEntity::get_all_child_ref_entities Return a list of all children, traversing down to

RefEntity::get_all_parent_ref_entities dimension d=0 (i.e. vertices); similar for parents, Hut
traversing up to dimension d=4 (i.e. bodies).

RefEntity::get_child_ref_entity_type Return the EntityType of the the immediate child

RefEntity::get_parent_ref_entity_type RefEntity’s. Similar for get_parent_entity type.

RefEntity::is_child Return CUBIT_TRUE if the input entity is a

RefEntity::is_parent child/parent (immediate or not) of the RefEntity

There are additional topology traversal functions defined in BapmlogyEntity, SenseEntity and
GroupingEntity; these functions generally provide traversals to tttehigher or lower type of
TopologyEntity, and are not as commonly used as the traversal functioopato@yEntity and RefEntity.
Descriptions of these functions are located in the automatic dotation for those classes.

3.5.1 Non-manifold modeling: BridgeManager

CGM accomplishes non-manifold modeling not by merging actual swdidel entities, but by having a
single RefEntity correspond to multiple solid model entities. Mergikgg entities with like topology and
geometry (within a geometric tolerance), and combines them intgle gntity. The changes to the
datastructure resulting from this operation can be described withpéestxample, merging two edges
together. First, the two RefEdges are compared, and the one with tis¢ ilbvgedesignated the “keeper”;
the other RefEdge is designated the “dead” entity. The TopologyBridget dbj the dead entity is added

to the list of TopologyBridge objects on the keeper's BridgeManagem, Tie topology graph is changed
such that all parents of the dead entity point to the keeper entity insteadefise entity immediately
above is changed to incorporate the correct sense (this procepgkised in more detail below). Finally,
the dead entity, along with its TopologyBridge object, are deleted. &efawith the keeper RefEdge
and its BridgeManager object, which maintains a list of two TopologyBotggrts. The process for
merging more than two entities together is similar, but now there aeethraot two TopologyBridge
objects in list in BridgeManager.

There are a few subtle things to note about the datastructure for nonichtopfidogy. First, we assume
that lower order topology has already been merged (this is checkistgeTool and accomplished during
the merging process); after fixing the topology graph for the parents ofdbesdéty, the topology graph
can be traversed as before. After merging takes place, from then@iél®l point of view, there is a single
shared entity. Any data assigned the shared entity, either by €@Mames, ids) or in an application
(e.g. mesh), applies to both the underlying solid model objects.

The sense entities immediately above the objects being merged may oot be changed, depending on
the type of entity and it's actual geometry. Consider first mergiogetiges together (see). Edge 1 is part
of loop 1, which uses the edge with a “forward” sense, and similariydige 2 in loop 2. When edges 1
and 2 are merged together, edge 2 goes away and loop 2 now uses edge 1. Note tHoogi2thatv

uses edge 1 with a “reverse” sense; this is stored in the datagtfogtonrodifying coedge 2, which
maintains the connection between the loop and the edge. Consider next mergiedgbasa®gether (see

). Loops 2 and 3 now use edge 1; however, only coedge 2 must have its sense thasgaede of coedge
3 is unchanged.

Merging faces is very similar. However, it is rare that twodaue merged together and the corresponding
cofaces both maintain the same sense; this would correspond to two volemegrg the same physical
space, which is usally not done. Therefore, MergeTool prints a warning wérgimgtwo faces like this.

The code which checks and changes coedge and coface senses if neckss#ad in MergeTool.

3.6 Building Applications

The previous sections in this User's Guide describe in more detaiéiign and use of the geometry
datastructure in CGM. In this section, the steps necessary to build ppticghich use CGM are
described.

3.6.1 Overall directory structure

CGM and its components are arranged in a directory structure desigméimize unnecessary
dependencies between components. This directory structure is depitable 16. In order to compile
applications using CGM, both directories, as well as any subdirectoniss be available at compile time.
The purpose of the code in each subdirectory is also described inlBable

Table 16: CGM directory structure and purpose of code in each suirectory.

Directory Purpose Depends on:

$(CUBIT_BASE_DIR)/util Utility functions for other code in CGM (none)

$(CUBIT_BASE_DIR)/util/OtherFiles| Configuration files foompiling CGM on (none)
various platforms

$(CUBIT_BASE_DIR)/geom Core CGM datastructure and tool ctasse | util, list, virtual,
facet
$(CUBIT_BASE_DIR)/geom/ACIS CGM interface to ACIS (avaikalbd ACIS geom, util, list,
licensees; see Appendix A). ACIS package
$(CUBIT_BASE_DIR)/geom/virtual Virtual geometry componéahatastructure | geom, util, list
and tools).

$(CUBIT_BASE_DIR)/geom/facet Facet geometry componenaétiatcture geom, util, list
and tools).

3.6.2 Compiling applications

A sample application is given in the following section; the makeéi#®eiated with this driver application
should be used as a reference for developing new applications based onR@a@s/of this makefile can
be inserted into the makefile of existing applications that want to beigip G&M. This section gives
some additional notes on compiling applications based on CGM.

As noted in Table 16, some of the code in CGM depends on the ACIS solidngaatedine; however, it is
not necessary to link CGM applications with ACIS if ACIS-based gegyméll not be used.

3.7 Implementation Notes

Included in this section are notes about the general implementation of ikBshould be known to
applications developers.

3.7.1 |Initializing CGM
CGM is initialized by calling the function:

CGMApp::instance()->startup(argc, argv);
Before or after initializing CGM, geometry engines required by fipdi@ation should be created using the
procedure described in Section 3.3.1. Separating the creation of geomggtgsefrom basic CGM
initialization allows the use of the same common CGM librariels different combinations of engines.

3.7.2 Singleton tools

Most tools accessed through the public interface of CGM are implethastsingleton classes. This well-
known design pattern is used for implementing functionality that is aftzabhature, without requiring the
functions themselves to be global (see [1] for a detailed descrigtibe singleton and other design
patterns). Singleton classes typically have constructors thatieaepwhich prevent the creation of new
singleton objects by classes other than the singleton class itselfetSinglass objects are accessed using
an instance function:

MyTool *tool = MyTool::instance();
This function is static, so it does not require an object of type MyTool befgredlled. Inside the
instance function, a singleton object of type MyTool is created dasdot already exist, and a static
pointer to this tool is maintained in the class. This pointer is themestuo the calling application.

Singleton classes are also used to accomplish extensibility of C&W dasses and tools call singleton
instances to accomplish things like create geometry and geonteatiytas. Applications can substitute
their own implementations of these singleton tools, which in effect allbevapplication-specific code to
be called from CGM without CGM being dependent on the applications. Thiseggoime careful
initialization of CGM from applications which extend its capabditie his process is described in more
detail in the following chapter.

3.7.3 Creation/modification through GeometryModifyTool

As stated earlier, all geometry creation and modification israptished by calling functions in
GeometryModifyTool. Although very few of these functions are agtumlplemented in
GeometryModifyTool, this class provides a focal point for calling geoyrfunctions, reducing the size of
the CGM interface applications developers need to understand beforehgsparkage. In general,
developers should look for needed functionality first in GeometryModifyToo

3.7.4 Geometric and Topological Queries

Certain functions are clearly object-oriented functions which aoxiaéed directly with geometry objects.
Examples include functions which return the length of an edge, theegectimnected to a volume, or the
closest point to a given surface. Object-oriented functionality like thisually implemented in the

RefEntity leaf classes (RefVertex, RefEdge, etc.), or in theinpatasses (BasicTopologyEntity or
RefEntity). These implementations either pass the request on to atlaizefor actual implementation, or
the functions are defined and implemented in one of the parent clasggmetal, functions implemented
on RefEntity objects are query-only; functions that modify geonagtytypically implemented in tools like
GeometryModifyTool or MergeTool.

3.7.5 Geometry Attributes

Functions which implement geometry attribute capabilities caralbed directly from RefEntity objects;
these functions are actually implemented in CubitAttribUser, anpalass of RefEntity. By default, only
entity name attributes are saved and restored automatically. Tie en&dmatic storing and retrieval of
geometry attributes, set a parameter using the function call:

CGMApp::instance()->attrib_manager()->auto_flag(CUB IT_TRUE);
This function sets options for all the attribute types such that theyrdtrenvand read automatically.

The geometry attributes capability can be used to store applicateifis information on geometric
entities. The mechanism used to implement application-spatiificutes is described in the next chapter.

3.8 C++ Driver Application

In this section, a simple CGM driver application is described. Thiscapiph, called mergechk, imports
one or more geometry files, computes any overlaps between the bogtieats the bodies, then merges
geometry into non-manifold geometry. Although very straightforward,application demonstrates how
to import geometry, perform boolean operations on it, then further querydheesg. The source code
for this application is shown in Table 17 - Table 21. Some dedasasind comments in the driver code
have been removed for brevity; the complete mergechk applicatitistitbuted with the CGM libraries, in
the cgm_apps/examples/driverc++ subdirectory.

Each of the code sections in mergechk is described below.

3.8.1 Forward declarations and main

The source code for forward declarations and the main function are sthndwble 17. This file begins
with the inclusion of files containing declarations of functions and datastes. In most CGM
applications, GeometryQueryTool.hpp and/or GeometryModifyTool.hgpwiincluded, since these are
the primary points of access to CGM. In the main function, the firstife@s of code initialize first CGM
(by calling CGMApp::instance()->startup()), then the AcisMoHifigine, which itself initializes
AcisQueryEngine and GeometryModifyTool. Even in cases wherec¢tsMAdifyEngine object is not
used immediately, it should be created before any other CGM functiesaléd, since the constructor
initializes many static datastructures used by CGM.

After CGM initialization, the application calls several functievtich import the geometry file(s), evaluate
any intersections, then perform imprint and merge operations on the bodgests Ree then printed out
for the user.

In this application, since it exits immediately after these gégnealculations, there is no need to
explicitly shut down CGM.

Table 17: Pseudo code for C++ driver code, forward declarations and main

/I include tool and datastructure declarations
#include “GeometryModifyTool.hpp”
#include “GeometryQueryTool.hpp”

(..)

/Il main program - initialize, then send to proper function
int main (int argc, char **argv)

/I initialize CGM
CGMApp::instance()->startup();

/I create an ACIS modify engine (query engine ¢ reated by that)
AcisModifyEngine::instance();

/I Read in the geometry from files specified on the command line
CubitStatus status = read_geometry(argc, argv);

/I Check for overlaps
status = evaluate_overlaps();

/I Imprint bodies together, reporting on result S
status = imprint_bodies();

/I Merge bodies
status = MergeTool::instance()->merge_all_bodies();

// Print number and ids of non-shared surfaces
status = print_unmerged_surfaces();

}

3.8.2 Reading geometry files

In the read_geometry() function, shown in Table 18, each file is openadhthéle pointer is passed to
GeometryQueryTool::import_solid_model function. This function seatithe geometry entities defined
in that file and stores them in the CGM database. These entitiesassedt through other functions in
GeometryQueryTool.

The return value from import_solid_model() should be checked for indisatioproblems reading the
geometry file.

Table 18: Pseudo code for C++ driver; read_geometry() function.

CubitStatus read_geometry(int num_files, char **arg V)
GeometryQueryTool *ggt = GeometryQueryTool::insta nce();
/I For each file, open and read the geometry

for (i=1;i < num_files; i++) {
file_ptr = fopen(argvf[i], “r");

if (file_ptr == NULL) PRINT_ERROR(“Could not op en file %s\n”, argvli]);
else {
status = gqgt->import_solid_model(file_ptr, ar gv[i], “ACIS_SAT");
}
}
return CUBIT_SUCCESS;

}

3.8.3 Evaluating overlaps using pairwise intersections

To find overlaps, each body is intersected with all the other bodies in te;rttas is implemented in the
evaluate_overlaps() function, shown in Table 19. A copy of the body fefrisved from CGM using the
GeometryQueryTool::bodies() function. Intersections are checkeehoving a body from the list and
intersecting it with all the bodies remaining on the list. An option isgolagsthe intersect function
instructing CGM to keep the old bodies being intersected, since these bodidsenchecked for merging
later in the application.

If there are no overlaps, there should be no geometry entitiesngdtdtm the overlap calculation. If
there are entities remaining, these are reported to the user. Thee ardireported by topology type,
with the topology-type filtering done using a list cast operation.

GeometryQueryTool::delete_Body() is called at the end oLietel overlaps() to delete any bodies
produced during the intersection operation.

Table 19: Pseudo code for C++ driver; evaluate_overlaps() function.

CubitStatus evaluate_overlaps()

/I evaluate overlaps by intersecting bodies pai
GeometryModifyTool *gmt = GeometryModifyTool::ins

/I make a copy of the body list for use in this
DLIList<Body*> all_bodies, all_new_bodies;
GeometryQueryTool::instance()->bodies(all_bodies)

/I step forward on this list, extracting the fi
/I as a tool for remaining bodies

for (i = all_bodies.size(); i > 0; i--) {
all_bodies.last();
Body *tool = all_bodies.remove();

I intersect the tool with remaining bodies;
/I bodies, since we're not using copies; save
Il later
DLIList<Body*> new_bodies, temp_bodies = all_bo
CubitStatus status = gmt->intersect(tool, temp_
CUBIT_TRUE)
all_new_bodies += new_bodies;

}

/I count number of geometric entities in new bo
/I overlaps, this number should be zero
DLIList<RefEntity*> child_entities, temp_children

/I first get all child entities of the new bodi

for (i = all_new_bodies.size(); i > 0; i--) {
all_new_bodies.get_and_step()->get_all_child_re
child_entities += temp_children;
temp_children.clean_out();

}

I then filter the list, keeping only unique en
temp_children.clean_out();
temp_children.merge_unique(child_entities);

/l now report
if (temp_children.size() '=0) {

/I check vertices

// temp_entities is cleaned out in the CAST_L

/ to do that here
DLIList<RefEntity*> temp_entities;
CAST_LIST(temp_children, temp_entities, RefVert
if (temp_entities.size() > 0)

PRINT_INFO(* Vertices: %d\n”, temp_entities

/I now delete all the bodies produced by the
DLIList<Body*> new_bodies;
CAST_LIST(temp_children, new_bodies, Body);
for (i = new_bodies.size(); i > 0; i--)

rwise
tance();

function

rst body and using it

make sure and keep old
new bodies for evaluation

dies;
bodies, new_bodies,

dies; if there are no

es

f_entities(temp_children);

tities

IST macro, so no need

ex);
.size());

intersections

GeometryQueryTool::instance()->delete_Body(ne w_bodies.get_and_step());

}

/l we're done
return CUBIT_SUCCESS;

}

3.8.4 Imprinting bodies

Bodies are imprinted in mergechk in the imprint_bodies() function, shown in Z&bl&eometry entities
can merge together only if they have like topology and geometry. Tiypitedels coming from CAD
packages like Pro/Engineer or SolidWorks do not have topology imprintdghbneng bodies.
Imprinting is accomplished using the GeometryModifyTool::img)ifunction. Since imprint will always
change the number of topological entities in a model, numbers tégetefore and after the imprint can
be compared to determine whether any imprints were made.

Table 20: Pseudo code for C++ driver; imprint_bodies() function.

CubitStatus imprint_bodies()

/I imprint all the bodies together, and report number of new
/I entities formed
GeometryQueryTool *gqt = GeometryQueryTool::insta nce();

/I first, count old entities
int num_vertices = gqt->num_ref_vertices();
int num_edges = gqt->num_ref_edges();
int num_faces = gqt->num_ref_faces();
int num_volumes = gqt->num_ref_volumes();
int num_bodies = gqt->num_bodies();

/l imprint the bodies together, discarding old bodies
DLIList<Body*> old_bodies, new_bodies;
gqgt->bodies(old_bodies);

GeometryModifyTool::instance()->imprint(old_bodie s, new_bodies);
/I now count new numbers of entities, subtracti ng old numbers
num_vertices = ggt->num_ref_vertices() - num_vert ices;

num_edges = gqt->num_ref_edges() - num_edges;

num_faces = gqt->num_ref_faces() - num_faces;

num_volumes = gqgt->num_ref_volumes() - num_volume S;
num_bodies = gqt->num_bodies() - num_bodies;

/I report results

if (Inum_vertices && 'num_edges && 'num_faces && Inum_volumes && Inum_bodies)
PRINT_INFO(“Imprinting resulted in no new entit ies.\n");
else {
PRINT_INFO(“Imprinting resulted in the followin g numbers of new
entities:\n");
if (num_vertices) PRINT_INFO(“ %d vertices.\n ");

if (num_edges) PRINT_INFO(* %d edges.\n");

if (num_faces) PRINT_INFO(* %d faces.\n");

if (hum_volumes) PRINT_INFO(* %d volumes.\n”);
if (num_bodies) PRINT_INFO(* %d bodies.\n") ;

// ok, we're done
return CUBIT_SUCCESS;
}

3.8.5 Merging and printing results

In the main function, after the call to imprint_bodies() (see Tabjeall bodies in the model are checked
for potential merges by calling MergeTool::merge_all_bodies(). Tinistion uses a pre-defined tolerance
while checking for coincident geometry; this tolerance can beggtausing other functions in MergeTool.

After merging, the unmerged surfaces can be determined by counting therrafmparent volumes. The
print_unmerged_surfaces() demonstrates stepping through the globgslistaces using the
GeometryQueryTool::get_first_refface() and Geometry@Leol::get_next_refface() functions (see Table
21). The CubitUtil::list_entity_ids() function takes a list of CuhtiBy objects and prints the id numbers of
those objects in a “pretty” format.

Table 21: Pseudo code for C++ driver; print_unmerged_surfaces(uhction.

CubitStatus print_unmerged_surfaces()

/I Print number and ids of non-shared surfaces

/I Non-shared surfaces are one with < 2 volumes connected to them,
Il or less than two parent entities
RefFace *face = GeometryQueryTool::instance()->ge t_first_ref_face();

DLIList<RefEntity*> parents;
DLIList<RefFace*> unmerged_faces;

for (i = 0; i < GeometryQueryTool::instance()->nu m_ref_faces(); i++) {

/I get the parent volumes
parents.clean_out();
face->get_parent_ref_entities(parents);
if (parents.size() < 2) unmerged_faces.append(f ace);

face = GeometryQueryTool::instance()->get_next_ ref_face();

}

/I now print information on unmerged surfaces

/I first cast faces to a cubit entity list; use cast_list_to_parent,
/l since it's much more efficient
DLIList<CubitEntity*> temp_entities;
CAST_LIST_TO_PARENT(unmerged_faces, temp_entities);
PRINT_INFO(“There were %d unmerged surfaces; thei rids are:\n”,
unmerged_faces.size());
CubitUtil::list_entity_ids("\0", temp_entities);

/I now we're done
return CUBIT_SUCCESS;
}

3.8.6 Program output

The mergechk application was run using as input the geometry shown in Eigline output of the driver
program applied to this geometry is shown in Table 22. By defaulbutipait from the calls to
PRINT_INFO and PRINT_WARNING go to standard out; output from PRINT_ERR®Ges to standard
error. The definitions of these print macros are located in Cubitidesgap, and can be changed in cases
where printed information is not desired. Alternatively, therewretions in CubitMessage which can be
used to turn off printed output.

Figure 1: Sample geometry used to test mergechk application.

Table 22: Output of mergechk driver application.

Read 2 ACIS Entities from the input file
Processing ACIS BODY 1, 2
Imported 2 Bodies: 1, 2

ERROR: Intersection operation failed.
Empty Body created.

Intersect finished;
Old bodies retained: 2
New bodies created: (none)

No body overlaps.

10

Group imprint finished,;
Old bodies retained:
New bodies created: 1 2

Imprinting resulted in the following numbers of new
6 vertices.
8 edges.
2 faces.

...Merging all features in the model

...Merging all Surfaces in the model
Surface 13 and 15 consolidated
Consolidated 1 surfaces

...Merging all Curves in the model
Consolidated 0 curves

...Merging all Vertices in the model
Consolidated 0 pairs of vertices

There were 12 unmerged surfaces; their ids are:
2t07,9to012, 14, 16

entities:

3.8.7 Makefile

The makefile for the C++ mergechk application is shown in Table B&.fifist thing to note about this
makefile is that it defines a make variable for CGM_BASE_DIR.s Thriable defines the location of
various parts of CGM, and should be set to one directory above the CGNesil{ize. the CGM libraries
are located in CGM_BASE_DIR/geom. and .../util). Using this makiabke, the makefile also includes
the make.client file. This file defines many other make variaidesied to compile CGM applications,
therefore this file should be included in the makefile for all CGMiegtons. CUBIT_BASE_DIR should
be defined to the same value as CGM_BASE_DIR; this variabledsfastegacy reasons in CGM
makefiles.

CGM application files are compiled using the default rules showmlte 23. The CGM_INCLUDE
variable tells the compiler where to look for include files whictlate CGM functions. The other
variables are defined in make.client, and provide other useful corfiader The ECHO_COMMAND
and PREFIX variables are used to reduce the amount of screen outputpplieatians are compiled; if
the user wishes to see the actual command being used to compile CGddtapdi they can simply
remove PREFIX from the default compile rule or reset the vdltleed®REFIX variable in their makefile.

When linking CGM applications, it is very important to provide the CGM 3.IBINK and
CUBIT_SYS_LINK variables as the last arguments to the link canthbefore specification of the output
file. This ensures that any CGM or ACIS functions used by apilicawill be resolved by the libraries
listed in these variables. Including the CGM_LIBS variable onishef dependents for the application
will ensure that the application gets rebuilt when it is out of date negtpect to the CGM libraries.

Table 23: Makefile for the mergechk CGM application.

CGM_BASE_DIR = /usr/localleng_sci/cubit/src
CUBIT_BASE_DIR = /usr/local/eng_sci/cubit/src
include $(CUBIT_BASE_DIR)/util/OtherFiles/make.clie nt

main rule

mergechk: mergechk.o ${CGM_LIBS}
${LINKER} ${DEBUG_FLAG} ${LFLAGS} mergechk.o ${GEO M_LIBS_LINK}\
${EXTRA_GEOM_LIBS_LINK} ${GEOM_LIBS_LINK} ${CUBIT_SYS_LINK} -0 mergechk

#i# replace some default suffix rules
.SUFFIXES : .0 .cpp
.CO:
${ECHO_COMMAND}
${PREFIX} ${CC} ${CFLAGS} ${MACH_CFLAGS} \
${CGM_INCLUDES} -c $<

.Cpp.o:
${ECHO_COMMAND}

${PREFIX} ${CXX} ${CXXFLAGS} ${MACH_CXXFLAGS}\
${CGM_INCLUDES} -c $<

3.8.8 Summary

The driver application described in this section shows how CGM can beauisegart, modify and query
solid geometry. Initialization and termination of the packageiamglified through simple API calls to
singleton classes. A large variety of functions can be accesseghthis interface, without needing to
know the details of how those functions are implemented.

This same driver program has also been implemented in C, to demonstratedh€danguage API
functions written for CGM. The C-language version of mergechk is of amabfe complexity to the C++-
language version. Using the C interface, programs written in C or FORTHaA also access and use
CGM for solid geometry evaluation.

3.9 Facet Driver Application

In the previous section, a simple driver application was describegjrgihhow to use CGM to access and
modify solid geometry. In many cases, however, applications naektfacet-based geometry, and
furthermore, would like to avoid the cost of linking solid modeling engade. This section gives a
simple example of how to do that.

The example described in this section shows how to initialize a faced-basdel and query the resulting
surfaces. Instructions are also given on how to build this application withking the ACIS solid
modeling engine. The pseudo-code below has many lines of the amtaakenoved, for brevity; the
complete example is distributed with the CGM libraries, in the_apps/examples/facetdriver
subdirectory.

3.9.1 Forward declarations and main

The source code for forward declarations and the main function are shdwable 17. This file begins

with the inclusion of files containing declarations of functions and datastes. In most CGM

applications, GeometryQueryTool.hpp and/or GeometryModifyTool.hpgpwiincluded, since these are
the primary points of access to CGM. The FacetQueryEngine.hpp fil@ imelisded, for declaration of

the facet geometry construction functions. In the main function,rstddiv lines of code initialize first

CGM (by calling CGMApp::instance()->startup()), then the Facet Geometry query tools. These classes
are used to create and query facet-based geometry, respectively.

After CGM has been initialized and the respective geometry enlziages created, we are ready to begin
creating facet-based geometry.

Table 24: Pseudo code for facet driver code, forward declarations and nmi

/I include tool and datastructure declarations
#include “GeometryQueryTool.hpp”
#include “FacetQueryEngine.hpp”

(.)

/Il main program - initialize, then send to proper function
int main (int argc, char **argv)
{

[/l initialize CGM
CGMApp::instance()->startup(argc, argv);

/I Initialize the GeometryQueryTool and facet e ngine
FacetModifyEngine *fqe = FacetModifyEngine::insta nce();
GeometryQueryTool *gqt = GeometryQueryTool::insta nce();

3.9.2 Creating point and facet objects

CGM provides point and facet classes for holding data for those obfeetdass hierarchy and design is
described elsewhere In brief, there are abstract base dagsBoint and CubitFacet which define
functions for accessing data, and leaf classes for actually stbasg tlata. For applications which need
CGM to store the facet data, the CubitPointData and CubitFacddaétdasses should be used.

In this example, a unit cube is created, with two triangular facetaiperface. Table 25 shows the code
for creating the point and facet objects for this geometry. The CPD andypé&dkfs are used as
shorthand for the CubitPointData and CubitFacetData classes, redgedfigmts are created for the eight
corners of the cube (some lines have been left out for brevitynidderidged source code for these
examples can be found in an Appendix of this report). All points are put onvahlish is used later as
input to the functions which make the faceted surfaces. Facets aeddi®m successive point triples,
corresponding to the facets bounding the unit cube. These facets are alsolistit ifhese lists are over

the abstract base class objects CubitPoint and CubitFacet, to allbeatmpps to use the same facet-based
geometry creation functions with other types of point and facetadas

Applications deriving point and facet data from other sources womlglgiderive their own versions of
CubitPoint and CubitFacet leaf classes, and build lists of theseobg@ey those data. Those lists would
be used as described below to create facet-based geometry.

Table 25: Pseudo code for facet driver, creating points and facets.

DLIList<CubitFacet*> f_list; DLIList <CubitPoint* > p_list;
/I define some really simple facets, correspond ing to the
/I facets for a brick

typedef CubitPointData CPD; typedef CubitFacetDat a CFD;

CPD *pl1 = new CPD(0, 0, 0); CPD *p2 = new CPD(1, 0, 0);

()
p_list.append(pl); p_list.append(p2);
(..)

CFD *f1 = new CFD(p1,p3,p2); CFD *f2 = new CFD(p1 P4.p3); 1l xy-

(...)
f_list.append(fl); f_list.append(f2); f_list.appe nd(f3);

(.-)

3.9.3 Creating facet-based geometry
Table 26 shows the code for creating the faceted surfaces and thagdsudty for this example.

The points and triangular facets bounding the geometry we would like toumireste stored in point and
facet lists, respectively. There are several options for creatifagearfrom these facets. The surface(s)
can be piecewise planar, corresponding exactly to the (planar teszst as input; or, a smooth
approximated surface can be fit over these points (see [2] for @pdiescof how this is done). This
option is controlled by an integsurf type in Table 26. There is also an option for creating a single
surface from these facets, or multiple surfaces separateddiaseorescribed angle between neighboring
facets. This angle is represented in Table 26 bwrbke variable; using a value of 30 degrees ensures
that for most models a single surface will be created. Using tlagameters, the faceted surface(s) are
created by calling the make_facet_surface function in FacetQuengengi

Once one or more faceted surfaces are created, those surfacesisad bs-is for normal and point
evaluations, or they can be used to construct a body. The latter might beésuaefolume mesh of the
region bounded by the surfaces is desired. Table 26 shows the stepsrpéoesszating a body from a
collection of surfaces. The result is a topological body, pointed to by ptrdyhich is bounded by a
collection of facet-based surfaces of our own definition.

Table 26: Pseudo code for facet driver; creating facet-based surfacghell, lump and body.

double angle = 30.0;

DLIList<Surface*> surf_list;

CubitStatus result;

result = fme->make_facet_surface(NULL, f_list, p_ list, angle, 4,
false, false, su rf_list);

ShellSM *shell_ptr;

result = fme->make_facet_shell(surf_list, shell_p tr);

DLIList<ShellSM*> shell_list;

shell_list.append(shell_ptr);

Lump *lump_ptr;

result = fme->make_facet_lump(shell_list, lump_pt n;

DLIList<Lump*> lump_list;

lump_list.append(lump_ptr);

BodySM *bodysm_ptr;

Body *body_ptr;
result = fme->make_facet_body(lump_list, bodysm_p tr);
body_ptr = GeometryQueryTool::instance()->make_Bo dy(bodysm_ptr);

3.9.4 Evaluation of topology and geometry

Once the geometry and topology have been created, applicationsidetetmat kind of evaluations of that
geometry are desired. Table 27 shows an example of querying thagppbthe model, then printing
information about some of those topological entities. In this examplauthber and position of
geometric vertices in the model are printed.

Table 27: Pseudo code for facet driver; print number and positions of genetric vertices.

/I print vertex positions
DLIList<RefVertex*> verts;
gqt->ref_vertices(verts);
int i
for (i = verts.size(); i > 0; i--) {
CubitVector coords = verts.get_and_step()->coor dinates();
PRINT_INFO(“Vertex %d: %f, %f, %f.\n",
8-i, coords.x(), coords.y(), coords. z());
}

3.9.5 Evaluating facet-based surfaces

Table 28 shows how facet-based surfaces are queried for closest point aad Wopuinter to the first
geometric face is obtained from GeometryQueryTool, then the fageited for a point closest to the
coordinate triple (.5, .5, 0). The normal of the surface at this point is alsedjudlote that the RefFace
class defines many other functions for querying the geometrgfface; for a complete list of these
functions, see the RefFace.hpp header file.

In some cases, applications need to evaluate individual facetsrirotted, for example when using a
smooth surface approximation. This is done using the barycentric coesdgrathe triangular facets. The
CubitFacet::evaluate() function is used for this purpose, as shown inZ&able

Table 28: Pseudo code for facet driver; evaluate geometric surfaead facet.

RefFace *face = gqt->get_first_ref_face();
/I find closest point to several places
CubitVector test_position, result_position, norma l;

test_position.set(.5, .5, 0);

face->find_closest_point_trimmed(test_position, r esult_position);
normal = face->normal_at(result_position);

PRINT_INFO(“Point (%4.2f, %4.2f, %4.2f):\n “

“closest=(%4.2f, %4.2f, %4.2f), normal =(%4.2f, %4.2f, %4.2f).\n”",
test_position.x(), test_position.y(), test_position.z(),
result_position.x(), result_position.y (), result_position.z(),

normal.x(), normal.y(), normal.z());

double a=1.0/3.0, b=1.0/3.0, c = 1.0/3.0;

CubitVector temp_point(a,b,c), eval_point;

f1->evaluate(temp_point, &eval_point);

PRINT_INFO(“Evaluation of facet 1 at (%4.2f, %4.2 f, %4.2f) is “
“(%4.2f, %4.2f, %4.2f).\n",
a, b, c, eval_point.x(), eval_point.y (), eval_point.z());

3.9.6 Program output

The output of this example is shown in Table 29. As expected, one sigrtaeated, with no bounding
curves or vertices. When evaluated in the center of each face, tbgt gosnt is clearly on a curved
surface, while the normals are parallel to the coordinate axegpasted.

As expected, 6 surfaces are created, along with eight vertices atrbesanirthe cube. All surface
evaluations fall on unit faces of the cube, and normals are parallel to tivectors, as expected.

Table 29: Output of facet driver application, angle = 30.

Constructed 1 surfaces.
Body successfully created.
Number of vertices = 0
Number of edges =0
Number of faces = 1
Number of volumes = 1
Number of bodies = 1
Point (0.50, 0.50, 0.00):

closest=(0.50, 0.50, -0.30), normal=(-0.07, 0.07, -1.00).
Point (0.50, 0.50, 1.00):

closest=(0.50, 0.50, 1.30), normal=(0.07, 0.07, 1 .00).
Point (0.50, 0.00, 0.50):

closest=(0.50, -0.30, 0.50), normal=(0.07, -1.00, -0.07).
Point (0.50, 1.00, 0.50):

closest=(0.50, 1.30, 0.50), normal=(0.07, 1.00, O .07).
Point (0.00, 0.50, 0.50):

closest=(-0.30, 0.50, 0.50), normal=(-1.00, -0.07 , 0.07).
Point (1.00, 0.50, 0.50):

closest=(1.30, 0.50, 0.50), normal=(1.00, -0.07, -0.07).
Evaluation of facet 1 at (0.33, 0.33, 0.33) is (0.7 3,0.27,-0.25).
Evaluation of facet 2 at (0.00, 1.00, 0.00) is (0.0 0, 1.00, 0.00).
Evaluation of facet 3 at (0.50, 0.50, 0.00) is (0.5 0,-0.11, 1.11).

Evaluation of facet 4 at (0.00, 0.50, 0.50) is (0.50, 1.11, 1.11).

Table 30 shows the output of a modified facet driver application, where Bnadri@5 degrees is used.
With this input, any facets whose interior angle is less than 135 deyiieles separated by a topological
curve, with a C1 discontinuity in the surface as well. Since thesfagait form a logical cube, we expect
to see that cube recovered in the geometric topology. Indeed, thiséstiteve get, i.e. there are eight
vertices, twelve curves and six faces in the resulting model. Ititglgsthe closest point evaluations all
fall on planar surfaces; this is because, for each surface in thed, tirelfacets making up each surface are
co-planar.

Table 30: Output of facet driver application, angle = 135.

Constructed 6 surfaces.
Body successfully created.
Number of vertices = 8
Number of edges = 12
Number of faces = 6
Number of volumes = 1
Number of bodies = 1
Vertex 0: 1.00, 1.00, 1.00.
Vertex 1: 0.00, 1.00, 1.00.
Vertex 2: 0.00, 0.00, 1.00.
Vertex 3: 1.00, 0.00, 1.00.
Vertex 4: 1.00, 1.00, 0.00.
Vertex 5: 1.00, 0.00, 0.00.
Vertex 6: 0.00, 0.00, 0.00.
Vertex 7: 0.00, 1.00, 0.00.
Point (0.50, 0.50, 0.00):

closest=(0.50, 0.50, 1.00), normal=(0.00, 0.00, 1 .00).
Point (0.50, 0.50, 1.00):

closest=(0.50, 0.50, 1.00), normal=(0.00, 0.00, 1 .00).
Point (0.50, 0.00, 0.50):

closest=(0.50, 0.00, 1.00), normal=(0.00, 0.00, 1 .00).

Point (0.50, 1.00, 0.50):

closest=(0.50, 1.00, 1.00), normal=(0.00, 0.00, 1 .00).
Point (0.00, 0.50, 0.50):

closest=(0.00, 0.50, 1.00), normal=(0.00, 0.00, 1 .00).
Point (1.00, 0.50, 0.50):

closest=(1.00, 0.50, 1.00), normal=(0.00, 0.00, 1 .00).
Evaluation of facet 1 at (0.33, 0.33, 0.33) is (0.6 7, 0.33, 0.00).
Evaluation of facet 2 at (0.00, 1.00, 0.00) is (0.0 0, 1.00, 0.00).
Evaluation of facet 3 at (0.50, 0.50, 0.00) is (0.5 0, 0.00, 1.00).
Evaluation of facet 4 at (0.00, 0.50, 0.50) is (0.5 0, 1.00, 1.00).
3.9.7 Makefile

The makefile for the facets application is shown in Table 31. In wags, this makefile is similar to that
of the mergechk application in Table 23. The most important diffelisnioehe link line, where the
${EXTRA_GEOM_LIBS_LINK} variable isnot present, as it is in the mergechk makefile. This make
variable is the one which contains definitions for the ACIS librariesincluding this variable in the facets
link line results in facets being linked without the ACIS librarieshis Baves a substantial amount of
memory in the application.

Table 31: Makefile for the facets CGM application.

CGM_BASE_DIR = /usr/localleng_sci/cubit/src
CUBIT_BASE_DIR = /usr/local/eng_sci/cubit/src
include $(CUBIT_BASE_DIR)/util/OtherFiles/make.clie nt

main rule

facets: facets.o ${GEOM_LIBS}
$(MAKE) libs
${LINKER} ${LFLAGS} ${MACH_LFLAGS} ${DEBUG_FLAG} f acets.o ${GEOM_LIBS_LINK} \
${CUBIT_SYS_LINK} -0 facets

replace some default suffix rules
.SUFFIXES : .0 .cpp
.Co:
${ECHO_COMMAND}
${PREFIX} ${CC} ${CFLAGS} ${MACH_CFLAGS}\
${CGM_INCLUDES} -c $<

.Cpp.o:
${ECHO_COMMAND}
${PREFIX} ${CXX} ${CXXFLAGS} ${MACH_CXXFLAGS} \
${CGM_INCLUDES} -¢ $<

3.9.8 Summary

The facets application described in this section shows how CGM candtouseate and query facet-
based geometry. While this example was done using hard-wired poinbpesitid facet topologies, it
would be simple to change to account for run-time-defined facets.

4 Application Developer’'s Guide

4.1 Introduction

There are two types of applications of CGM; the first type is eharapplication relies entirely on CGM
for its geometry functionality, and does not require addition of data to §&ivhetry objects or extension
of their functional capabilities. Another use of CGM, and one which isimare powerful, is to use
CGM geometry objects as foundation classes, upon which additiondabhadity is implemented. For
example, classes can be derived from the CGM basic geometgytgpés (RefVertex, RefEdge, etc.)

which not only provide geometry functionality, but which also (for exajmrovide mesh-related
functions and datastructure.

CGM has been carefully designed to support applications of the igtter In fact, the CUBIT application
is built on CGM by deriving CUBIT-specific geometry classes, whiufich the CGM geometry classes
with functions for generating and storing mesh. Since class derivatiised to extend the CGM classes,
these extended classes must be created and used in place of the unenrMhedsS€s, even if that
creation is taking place from within CGM. This is accomplished usaufolfy classes and other advanced
designed techniques; these techniques are described in this section.

This section begins by describing the CGM geometry entities whichecanrizthed using application-
specific subclasses. The Factory class used to create geemtétes is then described, along with how
this class can be extended to create application-specific ggoenéities. Sections 3.7.5 and 4.3 describe
geometry attributes, which are used to associate applicatioifispata to geometry entities. Section 4.4
describes the ToolData mechanism, which can be used to assoclat&tiappspecific data to many types
of data including geometry entities. Section 4.5 describes the Cubit@bsgechanism, which is used to
notify application-specific objects of changes to geometry egat#thd other observable objects. This
chapter concludes with specific information on how CUBIT uses these mauolsanignplement meshing
functionality on top of the CGM classes.

4.2 RefEntityFactory: Topological Entity Construction

As described earlier, the children of the RefEntity class are Riefy/dRefEdge, RefFace, RefVolume,
Body, RefGroup, RefPart, RefAssembly, and RefCoordSys. Thesesatiienost useful for
implementing applications using CGM, and are therefore the entitiesvithich child classes can be
derived. In the future, derivation of classes from other entitles]lbops and CoEdges, may be allowed.

Also described earlier was the relationship between entities sotltemodel file and the corresponding
CGM entities; for example, each FACE in an ACIS model hasragimonding RefFace in the CGM
model. When geometry is imported or created, the CGM entitieoastructed for each entity in the solid
model; this construction is implemented in CGM code, in particulaemn@@tryQueryTool. However, if
an application derives child classes from the CGM entities, thecapph-specific objects must be
constructed instead. Constructors for the application-specific dhBdes cannot be called from the CGM
code, since this would make CGM dependent on those applications. Thetefaenstruction of
RefEntity’s in the geometric model is implemented in a singletaofgcCGM is designed to allow this
factory to be replaced with an application-specific factorygctvisionstructs application-specific derived
class objects and returns them as CGM objects.

Consider first the CGM factory, implemented in the RefEntityFactiarssc Following the singleton
pattern, there is only a single RefEntityFactory object createtiécaiplication; this object is created the
first time RefEntityFactory::instance() is called. Afterwaritiss function simply returns a pointer to the
singleton factory instance (a static pointer to the instanceiigaired in RefEntityFactory). CGM
requires that all RefEntity’s be constructed using RefEntitylFactbis is accomplished by making the
constructors of RefEntity leaf classes inaccessible from otasses). RefEnityFactory declares virtual
functions for constructing geometric entities, e.g. RefEntityFactamystruct_RefFace,
RefEntityFactory::construct_RefVolume, etc.

To substitute an application-specific factory for RefEntitybagctan application simply derives that
factory from RefEntityFactory, and constructs that applicatiatiip factory before
RefEntityFactory::instance() is called (this is typically damst pefore initializing GeometryModifyTool).

A pointer to the application-specific factory is still stored in RefigRactory, and returned from
RefEntityFactory::instance(). However, since RefEntityFactoopstruct_xxx functions were declared
virtual, the application-specific factory can substitute alive implementations for these functions; these
implementations simply construct application-specific esgjtpassing them back as the parent class
pointer.

For example, say an application wants to extend the functionaligrti€es only. The application would
write a derived entity factory, ARefEntityFactory:

Class ARefEntityFactory : public RefEntityFactory

public:
ARefEntityFactory *instance()
{

if (instance_ == NULL) instance_ = new ARefEntityFa ctory;
return instance_;

}

Virtual RefVertex *construct_RefVertex(...);

}

Any CGM code calling RefEntityFactory::construct_RefVertexuldoactually call the function in
ARefEntityFactory, thanks to the virtual function mechanism in C+iis Way, an application-specific
vertex is created instead of an unextended vertex object. Note that, siegtetited vertex is derived
from RefVertex, all functions defined for RefVertex and its parenseksan be called directly from
ARefVertex. Therefore, the ARefVertex objects can be used for n@@kl-type topology traversal, as
well as for application-specific uses.

Details on how CUBIT uses this mechanism to implement meshing functjooalgeometry objects are
given in the next chapter.

4.3 Application-Specific Attributes

Geometry attributes are used to store application-specific datdlylime objects to which they are
associated. This data is saved to and restored from the solid meslelibmatically. Geometry attributes
used by CGM include entity names, ids, group membership, and others. CGMoaldegpa means for
applications to define their own attributes, which are then managé&M along with and in the same
way as CGM attributes.

Similar to how application-specific RefEntity objects are aggd, CGM utilizes a factory pattern for the
creation of attributes. A pure virtual base class, named CutilitRaictory, is defined with two pure virtual
functions, both named create_cubit_attrib; these functions create aagppispecific attribute from an
attribute type and a simple attribute pointer, respectively.

The process for defining an application-specific attribute factomg fllows. First, the application-
specific attribute classes are designed and written (see difilautas like CAEntityName and CAEntityld
for guidelines on writing attributes). Then, an application-specifibate factory is named and written
(in CUBIT, this class is named CAFactory); this factory is derivethf€ubitAttribFactory:

Class AppCAFactory : public CubitAttribFactory
{-}

Two functions need to be declared and defined:

CubitAttrib *AppCAFactory::create_cubit_attrib(cons tint attrib_type,
RefEntity *owner)

{.}

CubitAttrib *AppCAFactory::create_cubit_attrib(Cubi tSimpleAttrib *csa_ptr,
RefEntity *owner)

{1}

Both these functions must be defined, since they are called from CubitAtt

The constructor for CubitAttribFactory is declared to be protected, wnézns only child and friend
classes of CubitAttribFactory can construct this class. Typicatlapplication-defined attribute factory
will be written with a static member which constructs the factdnside that function, the factory must be
constructed and then passed to CubitAttrib, which stores a pointer to it:

static AppCAFactory *create_factory() {

ApplicationCAFactory *factory = new ApplicationCAFa ctory();
CubitAttrib::set_cubit_attrib_factory(factory);

}

This factory should be created before the application imports anynsodidl files, otherwise any
application-specific attributes in those files will not be initiedl automatically.

There are several static variables and one field in an enum corresptindaxh type of attribute. These
variables are described in Table 32. Currently, these variableheardum are defined in
CubitAttrib.hpp, inside the CGM code. This requires changes to CGM ifcatiphs choose to add more
attributes. This will be changed eventually to allow the definitiothege variables in the application-
specific attribute factory.

Table 32: Variables and enum defined for each attribute. Currentl, these variables are defined in
CubitAttrib.hpp.

Variable / Enum Description

AutoActuateFlaglt], When true, attributes of type t actuate/update automatically
autoUpdateFlag(t] after restoration / before saving from/to solid model file.
AutoReadFlaglt], When true, attributes of type t are read from/written to the soli
AutoWriteFlaglt] model file automatically.

ActuatelnConstructor|t] When true, attributes of type t are actuated from a call inside

the object constructor; otherwise, they are attributed after al
entities have been read from the solid model file in which the
attributes resided.

ActuateAfterGeomChangeslt] If true, attributes of type t are not actuated until after any
changes to the geometry resulting from other attributes have
taken place.

CubitAttribute Type Enum of attribute types; new attributes should be defined
before CA_LAST_CA in CubitAttrib.hpp.

AttTypeNamel[t] User-visible attribute type name of attribute t.

AttinternalName[t] Internal name for attribute type t (written to solid model file for

identification purposes).

When an attribute’s AutoActuateFlag flag is set to true, attritaftédsat type are actuated automatically
when the solid model file is imported. If the attribute’s ActuateIn@aotor flag is set to true, the
attribute is actuated from inside the constructor of the georastity to which it is associated, otherwise it
is actuated after the entire solid model is imported and thespamding geometry entities created.
Actuation of application-specific attributes should be donefulyeespecially if those attributes rely on
functions or data stored on application-specific geometric entitigsed from the RefEntity leaf classes
(RefVertex, RefEdge, etc.). In this situation, the actuate() fomddir these attributes will be called from
the RefEntity leaf class constructor, before the applicationdipentity has been created, so casting to an
application-specific object will fail. Application-specifittidbute actuate functions should check to make
sure they are applied to the correct type of entity, and if not, shoutth @UBIT_FAILURE. The actuate
function can be called again from the application-specific eatibstructor by calling
CubitAttribUser::auto_actuate_cubit_attrib(), at which time tkbatte can actuate correctly.

4.4 ToolData: Application-Specific Data

There are times when applications need to store data on geométiés émat is of a transient nature. For
example, the mapping algorithm in CUBIT stores angle information owetttiees bounding surfaces and
volumes. This data is no longer used after the meshing algorithm is figeherating mesh, and so there
is no need to store it in the datastructure of the geometric entity. C@Mties a mechanism for storing
transient data on entities; this mechanism is referred to as theataaapability.

This capability consists of two base classes, ToolData and ToolB&talloolDataUser is a base class of
RefEntity, and is used to manage a list of ToolData objects. ToolBetatdplements functions for

adding, removing, and returning a list of ToolData objects. Classesaléndve ToolData are used to
store the transient information which should be associated with the datBer. ToolData also stores a
pointer to the next ToolData in a list. Thus, ToolData objects are storesdriglg linked list, the head of
which is pointed to by ToolDataUser.

Implementing new types of ToolData objects is quite simple. Tool@eaiged classes are typically named
TDSomeName, and are required to implement an identification function:

int TDSomeName::is_some_name()
{return (get_address(TDSomeName_TYPE) ? CUBIT_TRUE : CUBIT_FALSE);}
This function is called from ToolDataUser to identify ToolData types:

TDSomeName my_td =

(TDSomeName *) tool_data_user->get_TD(&ToolData::is _some_name);

See documentation on ToolData, ToolDataUser, and some of the CGM Tool&xstes (TDCompare,
TDUniqueld) for more details.

4.5 CubitObserver: Application-Specific Observation of Entities

One of the classic problems in object-oriented design is how to alloslase(the observer) “observe”
another class (the observable), without making the implementation of dilsgtmaw about the
implementation of the observer. This problem is addressed by using thHahawett Observer pattern in
C++. CGM'’s implementation of observers, in CubitObserver and CubitObserimmodeled directly
after that pattern.

To implement an application-specific observer, the developer needghe tbllowing:

« Derive the application-specific class, e.g. ASObserver, frobitObserver

¢ Implement ASObserver::notify_observer(CubitObservable *observabémtEype observer_event,
CubitBoolean from_observable), which handles events generated byaiiles.

¢ Use the functions CubitObserver::register_observable and CubitObseregister_observable to
register and unregister the application-specific observer witblibervable
(CubitObserver::unregister_observable does not necessarily needdlbele since it is called in the
CubitObserver destructor).

The EventType enum is defined in CubitDefines.h.

There is also a mechanism in CubitObserver for implementing “stditservers, that is observers which
observe all events. Static observers can be registered by calliit®Bserver::register_static_observer
and CubitObserver::unregister_static_observer. This mechanism is uddBIif © implement some
graphics functions and to manage some global entity lists, for example

Applications are also free to implement their own observables dasvelbservers to observe them. In
fact, there are some classes in CGM which are derived from both Culnit@bke and CubitObserver. For
example, RefGroup is both a CubitObserver, to keep track of entities whighthe group but which
should get removed upon deletion, as well as a CubitObservable, sinceahtbe contained in groups.

4.6 Example: CUBIT Implementation Using CGM

In this example, details are given about how CUBIT is implemented on topMf Q@is purpose of this
example is to show how an application might extend the capabilities of GMriving classes from the
CGM classes. It also serves as an introduction to CUBIT developers@UfBd database.

4.6.1 Derived topological entities

In addition to representing geometry, geometric entities in CUBIT aisgtbe able to store mesh,
represent finite element boundary conditions, and serve as a point of Bcoesshing algorithms assigned
to those entities. This is done using inherited classes.

The inheritance hierarchy used in CUBIT is shown in . As the figure shoms gach RefXxx leaf class

in CGM (RefVertex, RefEdge, RefFace, RefVolume, Body and RefGrolf|Tderives a

corresponding MRefXxx class (MRefVertex, MRefEdge, etc.). CUBIT addimels a parent class for these
leaf classes, which is named MRefEntity. MRefEntity serves amaon base class for meshable entities
in CUBIT, and is decorated by (i.e. derived from) various classes whiicte @ertain meshing-related
functions. The parent classes of MRefEntity are MeshContainer, used tmegir®n an MRefEntity, and
MeshToolUser, used to associate meshing tool data with the entitydiimgcthe meshing scheme assigned
to the entity.

4.6.2 MRefEntity class

Using a common MRefEntity base class simplifies the design of thefXAR classes by allowing the
implementation of meshing functionality at a higher level in the diivdierarchy. However, it also
complicates things because of the use of multiple inheritance. Much mditsieag code in CUBIT
operates on lists of MRefEntity’s, since the parsing involvesgettieshing parameters, but it also needs
to access functions defined above RefEntity, list CubitEntity::ctesae and CubitEntity::id. For these
reasons, most of the commonly-used functions in RefEntity and abedefamed as virtual functions, and
can be overridden in derived classes. Using this technique, common fadig®class _name and id are
defined as virtual functions in MRefEntity as well, so that theylmused with MRefEntity objects.
These functions are defined in the MRefXxx leaf classes, and edlluhitEntity functions explicitly.

CGM applications not needing a common base class for derived geoem¢itiess need not implement one.
If an application does define a common base class like that, but ddeypterhent those common
functions, those functions are only accessible from objects oé#fielasses or from CGM objects.

4.6.3 Topology traversal functions

One of the most common operations on geometric entities is to aspe&sically connected entities, for
example finding all the edges containing a given vertex. These funct®m@Eemented in
TopologyEntity, and can be called directly from RefXxx objects. Howelesgetfunctions pass back lists
of RefXxx objects, which may still need to be casted to MRefXxx objects. To $idgverbblem, a similar
set of topology traversal functions is implemented in MRefEntity whatlrn lists of MRefXxx objects;
these functions have the same name as those in TopologyEntity, except witlpegpended to their
names, e.g. mref_edges, mref_faces, etc. To access the ref xxx fudicgotlg from an MRefEntity
object, the MRefEntity::topology_entity() function should be used todast the entity to a
TopologyEntity, on which the ref_xxx() function can be called directly.

4.6.4 MRefEntityFactory

As described in the previous chapter, a factory class is used to cremtigeentities in CGM. This

allows the definition of application-specific geometric entitieliclv are created from an application-
specific factory. CUBIT defines the MRefEntity class for thisggmse. Note that this factory class must be
instantiated before the creation of any geometry in the applicati@1JBIT, this is done by calling
MRefEntityFactory::instance() just before the first call tm@etryModifyTool::instance().

If an application-specific factory is implemented, it is alssponsible for the storage of global lists of
geometric entities; global list functions like ref_volumes€f faces(), etc. must also be defined (these
functions are declared virtual in RefEntityFactory for this purpo€&)BIT implements this by defining
pointers to global lists in RefEntityFactory. These lists araedda the first call to
RefEntityFactory::instance(), just after calling the RefER@igtory constructor; if an application-specific
entity factory has already been created, this part of RefEntityflyaatstance() is never executed, and the
list pointers remain NULL.

4.6.5 AttribFactory for CUBIT-specific attributes

As described in the previous chapter, applications can define their tiibntas by providing an
application-specific attribute factory. This factory should btammsated before any attributes are created.

In CUBIT, the CAFactory serves this purpose, and is instantiated befdiestheall to
GeometryModifyTool::iinstance(). CAFactory is derived from CuliiiBFactory, which is itself declared
in the CubitAttrib class header.

Currently, CUBIT-specific attribute types are part of the CubiildateType enum, defined in CGM.
Technically, this should not be done, since it requires modification of CGRttaplication-specific
attributes. Other applications can easily bypass this by defimgigawn use of the CubitAttributeType
values above the ones used in CGM (those currently end at CA_DEFERRERIB\INn
CubitAttrib.hpp). This will be changed eventually to allow the definition oftatyi attribute types
(identified by an integer).

4.6.6 DrawingTool

The DrawingTool class in CUBIT is used to implement graphics functigrfafi the entire code. As such,
this class depends on virtually all of the datastructure classd$BHTCand many of the datastructure
classes depend on DrawingTool. Eventually, this backward dependenbe véthoved and replaced
entirely by the static observer mechanism described earlier. Mpkrnentation will be done
incrementally. In the meantime, the GdrawingTool class in CGM senaepaent class of DrawingTool,
and simply provides empty functions for those DrawingTool functions wareltalled from within CGM.
Applications are welcome to derive their own drawing mechanism @®rawingTool (see
GDrawingTool for more details).

4.6.7 The Model class

It has proven useful in CUBIT to have a single point of access to all theetyyo mesh and boundary
condition data created during the meshing process; the Model classthaty@spose in CUBIT. While
the actual data may not be stored there, Model acts as a common poietefaef The functions in
Model then call the appropriate functions in MeshContainer, CGM, orewbeelse to retrieve the
necessary data. Other applications can easily port to using CGNaming their equivalent of the Model
class, and modifying it to provide access to CGM functions.

4.6.8 Adding mesh data to MRefGroup

In addition to adding various types of decoration to the basic geomet®iliggs in the RefEntity classes,
sometimes there is a need to modify the fundamental purpose of one of tfasseickares. In the CUBIT
application, RefGroup has been modified to store not only geometresittiit also mesh entities. This
required the addition of functions necessary for adding, removing andiacctdse mesh stored in a group.
MRefGroup is still derived from RefGroup (as well as MRefEntity), ddsb extends the functional
interface of RefGroup by defining MRefGroup functions and datastructure. Tgpli€ations can use a
combination of class decoration and class extension to add functiondhiy basic CGM geometric
entities.

5 CUBIT Usage of CGM

5.1 MRefEntity Class Structure

The structure of the MRefEntity class is shown in . Note that MRejHatitot derived from RefEntity.
While virtual inheritance could have been used to derive MRefEntity RefEntity, this was not done for
reasons of efficiency, and because of the already complicdtedtance hierarchy below the
TopologyEntity and RefEntity classes in CGM. The MRefXxx leaf ciadggive from both MRefEntity
and their RefXxx counterparts.

Since the parsing code works extensively with lists of MRefEntityotdyjenany of the functions defined in
RefEntity, TopologyEntity and CubitEntity have been re-defined in MRefEnlityorder to avoid
ambiguities when calling those member functions on MRefXxx objects, defisith the MRefXxx classes

were needed as well. Further complicating this problem, some of thugtehs were already re-defined
in some of the RefXxx classes (e.g. bounding_box()). To simplify definitidmesktfunctions, macros
were written and are stored in MRefFuncs.hpp. Four macros anediefi

« MREFFUNCS_DECLARE(CLASS)
Declares functions common to MRefEntity and MRefXxx classes; CL&§8ment is used in the
(inline) definition of the entity type() function.

¢ MREFFUNCS_DIFFERENT_IMPLEMENTATIONS
This set of functions has a common declaration across MRefEntitysactuldren, but the definitions
are different (e.g. bounding_box() considers only the entity for MRefVerterfBlody, but considers
all the contained entities for MRefGroup). #include’d in the MREFFUNTECLARE macro.

¢ MREFFUNCS_DEFINE1(CLASS)
Common definitions of functions declared in MREFFUNCS_DECLARE; #irectldh the
MRefXxx.cpp files. CLASS argument is used to qualify the function defimie.g.
CLASS::class_name().

e ¢+ MREFFUNCS_DEFINE2(CLASS)
Common definitions of functions declared in MREFFUNCS_DECLARE; #irgtlth the
MRefEntity.cpp files. CLASS argument is used to qualify the femctiefinition, e.qg.
CLASS::class_name(). Definitions differ from those in MREFFUNCEFIDNE1 because they call
the functions through the return value of ref_entity() instead of calling tlectly (this is done
because MRefEntity is not a direct descendent of RefEntity).

In addition to including these macros in the MRefXxx.hpp and MRefXxx.cpp filesititis are added

for the functions in the MREFFUNCS_DIFFERENT_IMPLEMENTATISNnacro.

Care should be taken when adding a function to those declared/defined imtoess, to make sure that
both the definitions are added (to MREFFUNCS_DEFINE1 and MREFFUNCSINBRJF as well as the
declaration to MREFFUNCS_DECLARE. It should be relatively rha¢ functions are added to these
macros at all.

When debugging these functions, the debugger will not be able to step into tienfudefined in these
macros. However, if the “step into” debugger function is used, the debudbstewiinto the definition of
the function in CGM, i.e. in RefEntity, CubitEntity, or wherever else it inedf

5.2 Library Initialization

Because of the extensibility features built into CGM, and the extenitiose classes by CUBIT, the
initialization of CGM is a bit more complicated for CUBIT. In pautar, CUBIT must initialize
MRefEntityFactory and CAFactory before creating or using GeometdyiyiTool. This is most easily
done by calling MRefEntityFactory::instance() and CAFactorgats_factory before calling
GeometryModifyTool::instance() for the first time. Also, there several tools which use mesh-defined
geometry, in particular CompositeToolMesh and PartitionToolMésset classes are derived from the
virtual geometry classes CompositeTool and PartitionTool, respgctand also must be initialized before
creating any virtual geometry. The initialization of these toad®ie in main(), before calling
GeometryModifyTool::instance().

The mechanics of how these CUBIT-specific tools are stored andnsséel CGM varies a bit.
MRefEntity, CompositeToolMesh and PartitionToolMesh are all édrfvom their respective parents who
are singleton classes. Singleton classes store a static poititer($ingle) instance of that class; the child
classes simply create a child object and store a pointer to thercttilel parent’s static pointer. Thus,
when the parent class’s instance() function is used, it returns the pointechildhelass. CAFactory, and
other classes derived from CubitAttribFactory, work slightly diffesen€@ubitAttrib keeps a static pointer
to a CubitAttribFactory object; this pointer is initialized to NULL, lgets assigned inside
CAFactory::create_factory to point to the CAFactory object. This oljerted from CubitAttrib if
attributes unknown to CubitAttrib are encountered.

5.3 Access To Geometric Model

5.3.1 Global lists

As stated earlier, pointers to global lists of entities are magdadn both RefEntityFactory and
MRefEntityFactory. Only one set of those pointers is non-NULL; irctdee of CUBIT, the lists are non-
NULL in MRefEntityFactory. Thus, global lists are stored and ssee from MRefEntityFactory; the
functions for accessing global lists in RefEntityFactory (e.g. refs{fgoef _volumes()) are declared
virtual, and are overridden in MRefEntityFactory.

Although the global list access functions are declared public in ERigfFactory, in most cases these
lists should be accessed through either Model or GeometryModify Todact, for most of the code in
CUBIT (i.e. the code outside CGM), these lists should be accessadlthModel. Model provides a
common access point for most of the datastructure in CUBIT (geamesh and boundary conditions).
The functions in Model are declared with the same names as those iEMiB&factory, to minimize
confusion. Functions are provided for returning list copies (mrefsfaac.), for returning a single entity
of a given type (mref_face(), etc.), or for direct (but read-only) méatipu of the lists
(get_first_mref_face(), get_next_mref_face(), get_lastf rfaee(), etc.). Similar functions are declared in
GeometryQueryTool, for accessing global lists of RefXxx extiti

In rare cases, efficiency concerns may be of such concern tbett @icess to the global lists is necessary.
There are functions defined in MRefEntityFactory which returrpthieters to the global entity lists, which
can be used to modify the lists directly. These functions should onlyedenlgn the functions in Model
or GeometryQueryTool cannot be used, for efficiency or other reaSmesthe documentation for
MRefEntityFactory for a description of these functions.

5.3.2 Topological queries

One of the most common types of geometry query in CUBIT is topolagiesies, e.g. return a list of
edges bounding a face. Since lists of entities do not derive from one dvadbdron the inheritance
hierarchy of the entities in the list, we need functions whichmdistis of MRefXxx objects that are
distinct from the corresponding topological query functions defined in Topiddy. That is, we need
functions like mref_edges(), mref_faces(), etc. that retsts 6f MRefEdge’s and MRefFace’s,
respectively. These functions are defined in MRefEntity, and sbecased with any object derived from
MRefEntity.

5.4 MRefEntity Construction/Destruction

Because of the extensibility features of CGM and the use of festiriconstruct geometric entities, the
implementation of the MRefEntity constructors and destructors eaatber complicated. This section
describes these implementations in more detail.

5.4.1 Construction

The constructors of the RefXxx classes are all private. This is tonramg code from constructing
RefXxx objects without going through the RefEntityFactory. This ensures thabde in CGM

requesting a new RefXxx object will actually get an application-speR#fXxx object (e.g. MRefXxx
object in CUBIT) in return. Constructors in the MRefXxx classes avaterfor the same reason. Because
all these constructors are private, the RefXxx and MRefXxx classdard RefEntityFactory and
MRefEntityFactory, respectively, as friend classes; thanal the factory classes to call those private
constructors.

Tools needing to construct new geometric entities must therefibfaraztions in the appropriate factory
class. For example, RefEntityFactory::construct RefEdge(Curvenstiaicts and returns a RefEdge given

a Curve pointer, while MRefEntityFactory::construct_MRefEdge(Cé)ywmnstructs an MRefEdge and
returns a pointer to an MRefEdge.

GeometryTool :: delete Body(Body * thisbody):

- delete solid model entities on thisbody and all | ower order geometry
- call thisbody->ModelEntity::remove_from_DAG():
- for all children (lower order geometry):
- remove thisbody from child's parent list
- call child->remove_from_DAG()
- if successful, add child to deactivated list

- notify observers of child that child is delet ed
- (end for)
- add thisbody to deactivated list
- notify thisbody observers that thisbody is dele ted
- call GeometryTool::cleanout_deactivated_geometr y0

- (end ModelEntity::remove_from_DAG())

GeometryTool::cleanout_deactivated_geometry():

- call DAG::cleanout_deactivated_DAG_nodes():
- for each deactivated DAG node:

- delete deactivated DAG node; in DAG node dest ructor:
- set CDO backpointer to DAG node to NULL
- delete CDO,; in CDO destructors (CDO is a Mo delEntity, which is a parent
of all the geometric entities):
- if CDODAGNodePtr is not NULL, set to NULL and delet e

(this should never happen!)
- (end CDO destructors)
- (end DAG node destructor)

Figure 2: Pseudo code for deleting geometric entities.

5.4.2 Destruction

Destruction of geometric entities in CUBIT was quite complitdtefore CGM, and remains so. At the
highest level, the GeometryQueryTool::delete_Body(Body *) foncthould be used to delete bodies.
This function implements the logic necessary to delete the body, thersmlil entities represented by the
body, and any mesh that may exist on the body that isn’t shared by geantties not being deleted.

Unfortunately, it is often necessary to understand what is happening cheiegtity deletion process.
Pseudo code for this process, as implemented when this manual was, werigsteown in Figure 2. The
most important thing to derive from this information is that the destruftinthe geometric entities are
called directly from CDODAGNODE::~CDODAGNODE().

5.4.3 Construction/Destruction and Multiple Inheritance

By definition, when a class object inherits from multiple basgsels, the base class constructors are called
before that of the child class, in the order in which they appear imtldectass declaration. Destructors

are called in reverse order. As implemented in CUBIT, the MRefXxsetaisherit from RefXxx first,

then from MRefEntity. This has important implications on what happeng iklBefXxx and MRefEnity
constructors and destructors.

The primary thing to remember about constructors is that during the cdiastrofcan MRefXxx object,
inside the MRefEntity constructor, the object does not yet know thadlgdsa RefEntity. This is because
the leaf class, MRefXxx, which is the link between the two sets of pareses]dsgas not yet been
constructed. So, if inside the MRefEntity constructor, an attempt is madd tef entity(), e.g. for the

purpose of traversing the topology, that function will return NULL. Thugwaork that needs to be done
in the constructor that requires topology traversal should be done inftictateses, not in MRefEntity.

Likewise, during the destruction process, the leaf class MRefXxesisaled before calling the
MRefEntity destructor. Any call to ref_entity() inside the MRefity destructor will also return NULL.
Therefore, any destruction-related code which requires topology trbskeosdd be called from the
MRefXxx destructors. For example, this requires that CubitObserviedrhove from_observers() be
called from the MRefXxx destructors, since observers sometiméspeopology traversal from the
entity they are un-observing.

5.5 Observer Notification

In order to remove dependency of CGM on CUBIT classes like DrawingTodladdl, while still being
able to notify those classes of changes to the geometry, a general obsstvanism was implemented.
Using this mechanism, objects derived from CubitObserver can ‘ajsavjects derived from
CubitObservable, and can be notified when these objects are modifiedroyelés The observer
mechanism works by keeping, for every observable, a list of obserkimis get notified upon changes to
the observable. Although this same mechanism could be used to implement thatiobsef entities by
DrawingTool and Model, this would be inefficient, since most mesh anugep entities would keep
pointers to these classes. Instead, a static observer mechanistvowapkemented, where certain classes
can register themselves to observe all events from all observables.

5.5.1 Static observers

Static observers register themselves by calling CubitObservestaegitatic_observer(CubitObserver®).
A pointer to each static observer is kept on a static observer list in Cubit@bgeatually, CubitObserver
just points to that list, creating it from CubitApp::instance() uporiigtq Typically, static observers are
also singleton classes, which means they can be registered itisetales constructor or the part of the
instance() function which calls the constructor (the latter methoseid when there may be child classes
derived from those singleton classes, to avoid the same object beingresbtstice). The current static
observers in CUBIT are DrawingTool and Model.

Static observers are notified of events by calling CubitObservefy.nstiatic_observers(EventType).

5.5.2 Construction

When entities are constructed, several things are done at the glaballibe entity must be added to
global lists, and if graphics are active, the entity is added to #phigs display list. In CUBIT, there are
specific events which accomplish these and other things; these eelidtealrin Table 33.

Note that notify_static_observers(MODEL_ENTITY_CONSTRUCTED)abed from both the MRefXxx
and RefXxx constructors. The implementation of this notify function is doméutlsr to avoid adding a
given entity to the global lists twice. This is accomplished in the fatigwiay. First, inside the
Model::notify_observer function, the CubitObservable argument is castMRefEntity; if that cast is
successful, the Model::notify(MRefEntity*, EventType) function iBezhwith that entity as an argument.
If the result of the cast is NULL, the Model::notify_observer fiorcteturns without doing anything
further. During the construction of an MRefXxx object, CubitObserver:ynatiftic_observers gets called
twice, once from the RefXxx::RefXxx constructor, and once from MRefXMRefXxx. The first call

does nothing, while the second call results in the entity being added to thleegliifydist.

Table 33: Events passed to CubitObserver::notify _static_observegiEventType) from various
functions in CUBIT.

« Event * Called from... * Action
e VGI_BODY_CONSTRUCTED » GeometryModifyTool:: | = Adds Body and its
make_Body descendents to graphics
display lists

FREE_REF_ENTITY_CONSTRUCTH
D

GeometryModifyTool::

make_Xxx
(Xxx = Face, Edge,
Vertex)

Adds entity (Face,
Edge, etc.) to graphics,
then calls
DrawingTool::make_to
pmost for that entity

MODEL_ENTITY_CONSTRUCTED

MRefXxx::MRefXxx,
RefXxx::RefXxx

Adds entity to global
entity list

e (constructors)

5.5.3 Destruction

When an entity is destructed, its observers must be notified so thatatihégke the proper actions prior to
that entity being removed. For example, when an entity which is contaiaegtaup is destroyed, that
entity must be removed from the group. Also, static observers shouldifiednaitthe entity being
destroyed. Inside each MRefXxx::~MRefXxx function are calls to
CubitObservable::remove_from_observers() and CubitObserver::notific stbservers(this,
MODEL_ENTITY_DESTRUCTED). The first function removes the alable from any observers that
are observing it, while the second notifies static observers that theigsmtfitgut to be destroyed. The
RefXxx::~RefXxx destructors do not need to call remove_from_obséyyvsitsce this function is called
from CubitObservable::~CubitObservable(). This function must bedcad the MRefXxx destructors
because some observers need to know that the observable is an MRefEtitay. |
remove_from_observers() function was not called in the leaf césdrudtors, by the time the function was
called in the CubitObservable destructor the link between MRejtartd RefEntity would be lost.

5.6 Attributes

There are three types of attributes implemented by CUBITh+spscific attributes, entity names, and
CUBIT owner attributes. The first two types of attributes ardéempnted as application-specific attributes
using the techniques described in Section 4.3. CUBIT owner attributesmesnented outside the

general attribute mechanism.

Documentation for the various mesh-specific attributes is foundseparate document. Entity names and
CUBIT owner attributes are described below.

5.6.1 Entity Name

Although the Entity Name attribute is implemented using the genetialigéls capability in CGM, there
are a few things that are done for entity names that diverge from al yfpitaute. These differences are:

« Entity names are written back onto a solid model entity after beadyfrom that entity, and after each
change to the entity name on a RefEntity object. This is done to faciktate persistence through
booleans. This is implemented in RefEntityName::add_refentity _nanuallbng
CAEntityName::update after adding the entity name.

* Inthe case where default names are used, the entity names arenadiately written back to the
solid model entities, since these names are not meant to persgst hoolean operations.

5.6.2 CUBIT owner

The CUBIT owner attribute is used during the CUBIT session, to relate algé&sts to their
corresponding CGM objects. The data in the CUBIT owner attribute consispowitar to an AcisBridge
object, from which a pointer to the corresponding TopologyEntity (and RefEokigct can be found.
Although the CUBIT owner attribute is stored in the ACIS .sat file,itémningless outside an active
CUBIT session.

Besides its use when geometry is not changing (to complete the biedieddink between

TopologyBridge and ACIS objects), the CUBIT owner attributede aked to implement persistent objects
in CUBIT. In this mechanism, the CUBIT owner attribute pointers are usedeiorilee which CUBIT
entities correspond to ACIS entities which survive boolean operatadswhich ones did not (and
therefore should be deleted). Ultimately, the CUBIT owner attributédowilised to determine when the
data in any other CUBIT attribute should be updated, for example to détectthe size of a geometric
entity changes.

6 Summary and Conclusions

This report shows how to use CGM to construct geometry applicatiors gl@uide) and how to extend
CGM to provide enhanced functionality on top of the geometry dd&s=veloper’'s Guide). CGM has
been used in both ways in various applications at Sandia National Lalesator

Several improvements have been made to CGM recently which aresoabedd in this report. Those
include distributing geometric models on parallel computers [1],nep@iGM to various other solid
modeling engines (including SolidWorks and Granite), and implementat@icahmon interface to
geometry based on CGM. Please contact the author if additional infmmrsabeeded about these items.

7 References

[1] ACIS 3D Toolkit, http://www.spatial.com/Products/Tooltaplkit. htm.

[21 S.J. Owen, D. R. White, T. J. Tautges, “Facet Based Surfiac8® Mesh GenerationProc. 11 Int.
Meshing Roundtable, Sandia National Laboratories, Albregiee New Mexico, September 2002.

[3] “SolidWorks API”, SolidWorks Corp http://www.solidworks.com/html/Products/api/

[4] “Application Programming Toolkit”, PTC, Inc, http://wwptc.com/products/proe/app_toolkit.htm.

[5] Jason Kraftcheck, “Virtual Geometry: A Mechanism for Miodtion of CAD Model Topology For Improved
Meshability”, Master’s Thesis, University of Wiscomd¥ladison, December, 2000.

[6] T. D. Blacker et al., ‘CUBIT mesh generation environtmespl. 1: User's manual’, SAND94-1100, Sandia
National Laboratories, Albuquerque, New Mexico, May 1994tp:#Mendo.sandia.gov/cubit/release/doc-
public/Cubit_UG-4.0.pdf

[7] E. Gamma, R. Helm, R. Johnson, J. Vlissides, “DeBigfterns: Elements of Reusable Object-Oriented Software
Addison-Wesley, 1995.

[8] Timothy J. Tautges, Hong-Jun Kim, “On the Partitioning anitidlization of Solid Geometry Models on Parallel
Computers”, 8th International Conference on Numef@ra Generation in Computational Field Simulations,
Honolulu, HA, June 2002.

Appendix A CGM Licensing

CGM will be released under an LGPL license; see http://cabdia.gov/CGM for details. However, the
LGPL-released version of CGM will not contain the ACIS modelingrengbde, because of restrictions of
the ACIS license. To obtain this code, institutions must themselvesensdid to use ACIS. Once this
license is verified by Sandia, the CGM code calling ACIS functiansbe obtained. Please contact cubit-
dev@sandia.gov for details. CGM can be built and used without the ACI$hality, for example using
the facet-based modeling capability.

Appendix B CGM, CUBIT Class Diagrams
Query/Modify Tools, Engines

RefEntityFactory

4_

- GeometryQueryTooIl—m GeometryQueryEngine
AcisQueryEngine
FacetGeometryEngine
...................... VirtualGeometryEngine
GeometryModifyTool 14@ GeometryModifyEngine
AcisQueryEngine

Figure 3: Class hierarchy for CGM geometry query and modify tools and ggines. These classes are
stored in CUBIT_BASE_DIR/geom subdirectory.

Topology Entities

l

BridgeManager
Y

(TopologyBridge)

CubitAttribUser ToolDataUser
ModelEntity .
RefEntity
TopologyEntity
37 ,
GroupingEntity SenseEntity BasicTopologyEntity
— Body — CoVolume L RefVolume
- Shell - CoFace L | RefFace
— Loop — CoEdge - RefEdge
— Chain — CoVertex L1 RefVertex

Figure 4: Class hierarchy for CGM topology entity classes. These ckes are stored in
CUBIT_BASE_DIR/geom subdirectory.

(BridgeManager)

v

TopologyBridge
I |
GeometryEntity OtherSolidModelEntity
| | '
[|
Point Curve Surface Lump ShellSM CoEdgeSM
BodySM LoopSM
PointSM CurveSM SurfaceSM LumpSM

(xxxACIS)

Figure 5: Class hierarchy for CGM geometry classes. These classes atored in

CUBIT_BASE_DIR/geom subdirectory.

ACIS

(GeometryQueryEngine) (XXxSM) AcisBridge
AcisQueryEngine
[[| K
: BodyACIS ShellACIS LoopACIS CoEdgeACIS
(GeometryModifyEngine) :
| =] I [
AcisModifyEngine PointACIS CurveACIS SurfaceACIS LumpACIS

PRO/E

(..)

Virtual

Figure 6: Class hierarchy for CGM geometry representation classes These classes are stored in
CUBIT_BASE_DIR/geom subdirectory.

Entity Factory

(RefEntityFactory)

Topology Entities

MeshToolUser

MeshContainer

MRefEntityFactory

L'—‘ (Refxxx)

MRefEntity

MRefFace

MRefEdge

MRefVertex

Figure 7: Class hierarchy for CUBIT factory and entity classes. fiese classes stored in

CUBIT_BASE_DIR directory.

Distribution:

9226 (all members)

9220 Rob Leland

9114 Matt Hopkins

9143 Kevin Copps

9141 Steve Bova

15233 (I think) Arlo Ames
9231 Dave Hensinger
9143 Greg Sjaardema
6741 Len Lorence

Robert Haimes

Dept. of Aeronautics and Astronautics
Massachusetts Institute of Technology
77 Massachusetts Ave. 37-467
Cambridge, MA 02139-4307

Scientific Computation Research Center
Rensselaer Polytechnic Institute

110 8" Street

Troy, NY 12180-3590

Center for Applied Scientific Computing
Lawrence Livermore National Laboratory
P.O. Box 808, L-661

Livermore, CA 94551

Center for Applied Scientific Computing
Lawrence Livermore National Laboratory
P.O. Box 808, L-661

Livermore, CA 94551

Xiaolin Li

Applied Mathematics and Statistics
1-119 Mathematics Building
SUNY-Stony Brook

Stony Brook, NY 11794-3600

Anders Petersson

Center for Applied Scientific Computing
Lawrence Livermore National Laboratory
Box 808, L-661

Livermore, CA 94551

Kyle Chand

Center for Applied Scientific Computing
Lawrence Livermore National Laboratory
P.O. Box 808, L-661

Livermore, CA 94551

William Henshaw
Center for Applied Scientific Computing

Lawrence Livermore National Laboratory
Box 808, L-560
Livermore, CA 94551

Brian McCandless

Lawrence Livermore National Laboratory
Box 808

Livermore, CA 94551

David Hardin

Lawrence Livermore National Laboratory
Box 808

Livermore, CA 94551

